Here is an application of the chain rule.
(1) The volume of water, in cubic feet, in a spherical tank of radius 4 feet is given by

$$
V=\frac{\pi}{3} h^{2}(12-h)
$$

where h is the height, in feet, of the water in the tank.

Water flows in and out of the tank regularly. The height of the water in the tank is given by

$$
h=\sin (\pi t)+2,
$$

where t is time, in hours elapsed since some starting time.
(a) Find the instantaneous rate of change (with correct units) of the volume with respect to height when $t=1$.
(b) Find the instantaneous rate of change (with correct units) of the volume with respect to time when $t=1$.
(2) A simple model of the Lion population in the Kruger national park in South Africa is as follows:

$$
L(s)=100 \sin \left(\frac{\pi}{6} s^{2}-\frac{\pi}{6} s+\pi / 3\right)+1000
$$

Where L is the number of lions and s is the number of springbok ${ }^{1}$. The population of springbok is given by

$$
s(g)=500 \cos \left(\frac{\pi}{6} g+\frac{\pi}{4}\right)+10000
$$

where g is the total available grazing biomass, measured in tonnes.
(a) Find the instantaneous rate of change of the lion population with respect to the springbok population when $g=100000$.
(b) Find the instantaneous change of the lion population with respect to the total available grazing biomass when $g=100000$. What are the correct units for this quantity?

[^0]
[^0]: $\overline{{ }^{1} \mathrm{~A} \text { springbok }}$ is a small antelope favoured by lions

