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Abstract

We investigate the construction of optimal (in the sense of Markowitz) portfolios with the
additional assumption that the portfolios are sparse. That is, that there are few active positions
compared to the number of tradeable assets. Moreover, we impose a ‘no short positions’ constraint,
in order to make our results of more use to the individual, non-institutional investor. Using
historic data, we construct sparse portfolios which accurately duplicate the performance of an
equally weighted portfolio, which is known to be a highly effective portfolio selection strategy.

1 Introduction

Simply put, a portfolio is a collection of investments in some subset of a given set of assets. These
investments can be either long (i.e. ownership of some portion of the asset) or short (borrowing of
some portion of the asset). Given a fixed set of assets to invest in, a natural question is, ‘what is the
optimal portfolio made out of them’?. Clearly the answer to this question depends on the individual
investor, but in 1952 Markowitz ([Mar52]) provided the key insight that was to become the basis of
Modern Portfolio Theory (MPT). He realized that central to an investors choice of portfolio is the
balancing of risk and reward. Using this, he provided the following rule of thumb to guide investors
in creating their portfolios: ‘Given several portfolios with the same expected return, the optimal one
is the one with smallest standard deviation of return.’ Given N tradeable assets, with estimated
returns µ1, . . . , µN and correlation matrix Σ, this suggests that one fix a desired return µ∗ and solve
the optimization problem:

wopt = arg min
w∈RN

+

wTΣw subject to µTw = µ∗ and
N∑
i=1

wi = 1 (1.1) eq:LSMarkowitz

where µ = [µ1, . . . , µN ]T . Unfortunately, problem (1.1) is notoriously difficult to solve in practice
(see DeMiguel, Garlappi et al), essentially because it is unstable. That is, small discrepencies in
the estimation of Σ can create arbitrarily large differences in wopt. Clearly this is computationally
problematic, as in any real-world scenario Σ will be computed from empirical data, and thus liable
to contain errors. In light of this, it is tempting to opt for the ‘näıve’ portfolio, wn, which allocates
1/N -th of the available capital to each available asset.

This approach, while generally successful ([?]) is not always ideal for small investors once trans-
action costs are taken into account. Indeed, if an investor is to be charged a brokerage fee of K
dollars per transaction, just to set up wn will cost KN dollars, an amount likely comparable to the
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total available capital of the investor! In this short report, we discuss how one can use ideas from
signal processing to create a portfolio with only a few active positions (a ‘sparse’ portfolio) whose
performance matches that of wn.

2 Related work

To the best of the author’s knowledge, the first groups to connect Optimal Portfolio Theory with
Compressed Sensing were Brodie et al. ([BDDM+09]) and independently DeMiguel et al. ([DGNU09]),
who (independently) proposed modifying (1.1) by adding an `1-norm penalty function:

wopt = arg min
w∈RN

+

(
wTΣw + λ‖w‖1

)
(2.1) eq:LASSO

subject to µTw = µ∗ and
N∑
i=1

wi = 1 (2.2) eq:Constraint1

Problems of the form (2.1), without the constraints (2.2), are known as LASSO (Least Absolute
Shrinkage and Selection Operator) problems, and were introduced in the Statistics literature in 1996
by Robert Tibshirani ([Tib96]). Importantly, as noticed by Tibshirani, solutions to the LASSO tend
to have few non-zero entries (they are sparse). It can also be shown that the LASSO problem is
stable. Brodie et al. showed, both theoretically and experimentally, that the solution to problem
(2.1) - (2.2) is a sparse, (Markowitz-) optimal portfolio, which in many cases outperforms the naive
portfolio wn.

On the other hand, Compressed Sensing, a sub-field of mathematical Signal Processing, has
developed many other problem formulations (as well as algorithms) akin to (2.1), which are designed
to find sparse solutions to linear problems like Ax = y or arg min ‖Ax − y‖2. However, problems
where additional constraints need to be imposed (such as (2.2)) are understudied in the literature.
Fortunately, a recent thesis of Kyrillidis ([Kyr14], see also [KBCK13]) studies the problem:

xopt = arg min f(x) (2.3)

subject to: ‖x‖0 ≤ s
N∑
i=1

xi = λ and xi ≥ 0 for all i (2.4)

where f : RN → R is convex and differentiable and ‖x‖0 := #{i : xi 6= 0}. He also develops a
Projected Gradient Descent (PGD) algorithm capable of efficiently approximating xopt. He then
adapts this to the portfolio optimization problem, studying:

wopt = arg minw>Σw − τµ>w (2.5) eq:Kyr1

subject to: ‖w‖0 ≤ s
N∑
i=1

wi = 1 and wi ≥ 0 for all i (2.6) eq:KyrConstraint

where τ is a tuneable parameter balancing risk and reward. Furthermore, he demonstrates exper-
imentally (using the Fama-French 48 data set) that the portfolios obtained for s = 4 and s = 10
(i.e. 4 or 10 active positions) are surprisingly competitive, frequently outperforming the naive 1/n
strategy and a more sophisticated quadratic programming strategy.
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A third related line of research is that of sparse index tracking. We shall think of an index as a
special kind of financial data time series. This could be the hourly/ daily/ weekly/ etc. returns of
an idealized portfolio (such as the SP500 or the DJIA), commodity prices, or something more exotic
such as investor sentiment ([BDDM+09]). In any case, given such a time series y, as well as a T ×N
matrix of returns R for all available assets (over the same time interval as y, the goal is to create a
portfolio wy which tracks the performance of the index y as well as possible. Mathematically, this
is a simple least squares problem:

wy = arg min
w

‖y −Rw‖2 (2.7) eq:Tracker

For reasons similar to those outlined in the Introduction, it is often useful to add a sparsity constraint
(and we shall also add a ‘no-shorts’ constraint) to problem (2.7), resulting in the (no-shorts) sparse
index tracking problem:

wy = arg min
w

‖y −Rw‖2 subject to: ‖w‖0 ≤ s and wi ≥ 0 (2.8) eq:SparseTracker

This problem is studied thoroughly in [ZXL15], although they use a different algorithm to Kyrillidis’
PGD. We shall consider the index tracking problem with index given by the returns of the equally-
weighted portfolio wn. That is: y = Rwn.

3 Problem Formulation

Before formulating the problem we wish to solve, let us introduce some notation. For each asset
i = 1, . . . , N , let ri,t denote the return on asset i over the t-th time interval (week/ month/ day etc.)
where t runs from 1 to T . Collect these into a vector rt = [r1,t, . . . , rN,t]

>. Let R denote the T ×N
matrix with r>t as its t-th row. Note that given a portfolio w, the t-th entry of Rw ∈ RT gives the
return of this portfolio over the t-th time interval. Hence, we consider the problem:

ws = arg min
w

‖Rwn −Rw‖2 subject to: ‖w‖0 ≤ s and wi ≥ 0 (3.1) eq:SparseTracker

We solve this problem using the PGD algorithm, which in this case amounts to a slight variation of
the well-known compressed sensing algorithm Iterative Hard Thresholding (IHT). Code is available
at danielmckenzie.github.io.

4 Numerical Experiment
section:Num

We conducted two numerical experiments; one using the Fama-French FF48 data set 1 , consisting of
48 industry sector portfolios (such as ‘Medical Equipment’, ‘Chemicals’ or ‘Entertainment’. ) and one
using data for the 500 stocks making up the SP500, obtained from Yahoo! finance. Unfortunately as
Yahoo! appears to no longer be supporting their Finance API, the second data set is no longer easily
available. For the sake of reproducibility, we thus include only the results of the first experiment.
We follow the experimental methodology of [BDDM+09]. For each year between 1976 and 2006, we
constructed 10 portfolios with sparsities s = 2, 4, 6, . . . , 20 using the previous five year’s returns as
training data. We then simulated holding these portfolios for one year, and calculated their final
returns. Thus, we end up with a data set of returns of 30 portfolios for each sparsity level, each held
for a year. As a control group, we also calculate the return on wn for each year from 1976 to 2006.

1available at: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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The percentage mean monthly returns (µ), precentage monthly risk (i.e. standard deviation, σ) and
Sharpe Ratio S = µ/σ) are tabulated below:

Sparsity µ σ S

10 1.30 5.04 0.26

12 1.27 4.96 0.26

14 1.26 4.90 0.26

16 1.28 4.84 0.26

18 1.25 4.80 0.26

20 1.25 4.67 0.27

22 1.24 4.67 0.26

24 1.21 4.63 0.26

26 1.21 4.59 0.26

28 1.23 4.58 0.27

30 1.20 4.59 0.26

32 1.22 4.60 0.26

34 1.21 4.59 0.26

36 1.22 4.58 0.27

38 1.19 4.60 0.26

40 1.20 4.56 0.26

42 1.20 4.56 0.26

44 1.20 4.54 0.26

46 1.19 4.52 0.26

48 1.19 4.50 0.27

wn 1.19 4.50 0.27

Table 1: The percentage monthly returns, risk and Sharpe ratio for sparse portfolios and the evenly
weighted portfolio wn.

While the mean annual return and risk is presented graphically in figure 1. Recall that the
goal of this exercise is to duplicate the performance of wn using a sparse portfolio. Unsurprisingly
the ‘sparse’ portfolios with 40+ active positions mimic the performance of wn very closely (in fact
the portfolio with 48 active positions frequently coincides with wn). What is pleasantly surprising
is that there are several portfolios with fewer than 24 active positions (i.e. less than 50% sparse)
whose performance still tracks wN closely. Equally unexpected is that several of these truly sparse
portfolios have a higher annual Sharpe ratio than wn, as seen in figure 1 (a higher Sharpe ratio is
more desirable).
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Figure 1: Annual performance of Sparse portfolios, indicated by red stars. The performance of wn

is indicated by a dashed black linefigure:Performance

5 Concluding Remarks

The results of section §4 corroborate the claim made in [BDDM+09] and [ZXL15] that sparse portfo-
lios perform favourable when compared against other portfolios, at least given a fairly small ‘market’
of available securities. IT would be interesting to test the behaviour of sparse portfolios found using
our approach on larger data sets, as in [ZXL15]. We remark that the experimental setup (construct-
ing an entirely new portfolio each year) is not meant to mimic investor behaviour - an investor is
likely to construct a portfolio and then make minor alterations to it each year. This can also be
modelled using the Compressed Sensing framework, by considering sparse portfolio adjustments, as
in [BDDM+09]. We leave this consideration for future work.
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