
Learning to predict Nash equilibria from data using
fixed point networks

SIAM OP21

Howard Heaton1, Daniel McKenzie1, Qiuwei Li1, Samy Wu Fung1,
Stanley Osher1 and Wotao Yin2

1University of California, Los Angeles

2Alibaba DAMO Academy

July 20, 2021

Overview

I Study games depending on external parameter d.

I Wish to predict outcome of game knowing only d.

I Reduce game to variational inequality then to fixed point problem.

I Train neural network to solve FP problem.

2

Papers and Code

I Wu Fung, Heaton, Li, McKenzie, Osher & Yin:
FPN’s: Implicit Depth Models with Jacobian-Free Backprop.

I https://github.com/howardheaton/nash_fixed_point_networks

I Heaton, McKenzie, Li, Wu Fung, Osher & Yin:
Learn to Predict Equilibria via Fixed Point Networks.

I https://github.com/howardheaton/fixed_point_networks

3

https://github.com/howardheaton/nash_fixed_point_networks
https://github.com/howardheaton/fixed_point_networks

Outline

Contextual Games

Naive N-FPN

Scaling to large games

Contextual Traffic Routing

Contextual Games 4

Contextual Games

I Consider game with K interacting agents.

I Contextual1: d represents factors beyond agents’ control.

I Agent k chooses xk. Incurs cost uk(xk, x−k; d).

I All agents self-interested; seek to minimize uk.

Nash Equilibrium (NE)

x?d =
[
x?d,1 · · ·x?d,K

]
is a NE if no agent can decrease their cost by

unilaterally deviating.

1Contextual Games: Multi-Agent Learning with Side Information Sessa et al (2020)
Contextual Games 5

Example: Contextual Rock, Paper, Scissors

I K = 2. Available actions = {R,P, S} for k = 1, 2.
I Payoff parametrized by d:

u1(x1) = x>1 B(d)x2 and u2(x2) = −x>1 B(d)x2 (1)

I Mixed strategies: xk ∈ ∆3 = {x ∈ R3 : x ≥ 0 ,
∑
x[i] = 1}

Scissors
beats paper

P
ap

er
be

at
s

ro
ck

R
ock

beats scissors

Figure: By Enzoklop - Own work, CC BY-SA 3.0,

https://commons.wikimedia.org/w/index.php?curid=27958688

R P S
R 0 �1 1
P 1 0 �1
S �1 1 0

1

R P S
R 0 �

⌦
w1, d

↵ ⌦
w2, d

↵

P
⌦
w1, d

↵
0 �

⌦
w3, d

↵

S �
⌦
w2, d

↵ ⌦
w3, d

↵
0

�! B(d) ,

2
4

0 �
⌦
w1, d

↵ ⌦
w2, d

↵
⌦
w1, d

↵
0 �

⌦
w3, d

↵

�
⌦
w2, d

↵ ⌦
w3, d

↵
0

3
5

Table 2: Payoff matrix B(d) for contextual Rock-Paper-Scissors (RPS).

0 250 500 750 1 000

10�2

10�4

10�6

Epoch

T
es

t
M

S
E

0 5 000 10 000

101

100

10�1

10�2 Optimal vs Optimal

Optimal vs N-FPN

Optimal vs Uniform

Games Played k

A
b
s.

A
v
e.

C
os

t
y

k

Figure 2: Rock-paper-scissors example. Left plot shows N-FPN test loss during training. Right plot
shows the cost expression yk over the course of k games in three settings. The first player always acts
optimally, knowing both the true cost u1(·; d) and the second player’s strategy. The second player
either also acts optimally, chooses uniformly randomly, or uses N-FPN predictions only knowing d.
Both players acting optimally yields a Nash equilibrium, making yk ! 0. When the second player is
uniform, the first player typically wins. This plot shows the N-FPN player chooses nearly optimally.

5 Numerical Examples192

We show the efficacy of N-FPNs on two games types: rock-paper-scissors and traffic routing.193

5.1 Rock Paper Scissors194

We perform a rock-paper-scissors experiment similar to [36]. Each player’s actions are restricted195

to the unit simplex �3 , {x 2 R3
�0 : kxk1 = 1} ⇢ R3 so that C = �3 ⇥�3 and actions xi are196

interpreted as probability distributions over three choices: “rock”, “paper” and “scissors.” Equilibria197

x?
d are drawn from VI(F (· ; d), C), using the game gradient F in (8) with cost functions given by198

u1(x; d) , hx1, B(d)x2i and u2(x; d) , �hx1, B(d)x2i , (15)

where the payoff matrix B(d) 2 R3⇥3 (see Table 2) defines the players’ cost functions using199

wi 2 R3
�0. Contextual data d are drawn from a distribution D that is uniform over [0, 1]3. An N-200

FPN is trained to predict x?
d from d using training data context-action pairs {(di, x?

di)}1000
i=1 , without201

using knowledge of F . The tunable operator F⇥ in (10) consists of a residual update with two202

fully connected layers and a leaky ReLU activation. Forward propagation uses Algorithm 2. For203

illustration, we simulate play between two players. The first player acts optimally using knowledge204

of B(d) and the second player’s strategy. Three options are used for the second player: another205

optimal player, an N-FPN player that only has access to d, and uniform choices. With two optimal206

players, a Nash equilibria is obtained where the expected cost after each game is zero. If the N-FPN207

is well-trained, then the second case yields the same result. In the final case, the optimal player has208

an advantage, yielding first player costs less than zero (i.e. the first player usually wins). Here209

(Expected Abs. Nash Player k-Game Average Cost) ⌘ yk , Ed⇠D

"�����
1

k

kX

`=1

u1

�
s`; d

�
�����

#
, (16)

where sk is a tuple of two one-hot vectors (e.g. sk
1 ⇠ x?

d and sk
2 ⇠ N⇥(d)). If N⇥(d) = x?

d, then the210

expected cost u1 is zero and yk ! 0 (n.b. simulated games have nonzero variance due to one-hot211

sampling sk
i whereas x?

d is continuous). This behavior is illustrated in Figure 2.212

5.2 Contextual Traffic Routing213

Setup Consider a road network represented by a directed graph with vertices V and arcs E. Let214

N 2 R|V |⇥|E| denote the vertex-arc incidence matrix (see Appendix C.1). An origin-destination pair215

6

Figure: Payoff/cost matrices for
classical RPS (top) and contextual RPS
(bottom)

Contextual Games 6

https://commons.wikimedia.org/w/index.php?curid=27958688

Technical Slide: Assumptions and Notation

I Assume uk(·, x−k; d) convex and smooth for all x−k, d.

I Action set: xk ∈ Vk ⊂ Xk where:

– Xk Hilbert space.
– Vk compact and convex.

I C , V1 × · · · × Vk,

I Reserve F for game gradient:

F (x; d) ,
[
∇x1

u1(x; d)>, . . . ,∇xK
uK(x; d)>

]>
. (2)

I Assume F (· ; d) is α-cocoercive:

〈F (x; d)− F (y; d), x− y〉 ≥ α‖F (x; d)− F (y; d)‖2, for all x, y

I Data space: d ∈ D.

Contextual Games 7

Reducing to Fixed Points

Variational Inequality (VI) Problem

Find x◦d ∈ C such that:

〈F (x◦d; d), x− x◦d〉 ≥ 0, for all x ∈ C. (3)

VI(F (· ; d), C) = {all such x◦d}.

We have the following equivalence2:

x◦d is a Nash Equilibrium ⇐⇒ x◦d ∈ VI(F (· ; d), C). (4)

2Prop. 1.4.2 in Finite-dimensional variational inequalities Facchinei & Pang
Contextual Games 8

Reducing to Fixed Points

I Consider PGD-type operator:

R(x; d) , PC(x− αF (x; d)), (5)

I The indicator function δC(x) ,
{

0 if x ∈ C
+∞ otherwise

is convex.

I Subgradient ∂δC also known as normal cone operator.

I We have the following equivalence3:

x◦d ∈ VI(F (· ; d), C) ⇐⇒ 0 ∈ F (x◦d; d)+∂δC(x
◦) ⇐⇒ x◦d = R(x◦d; d).

I Find NE by finding FP of R(· ; d).

3Chpt. 12 in Finite-dimensional variational inequalities Facchinei & Pang
Contextual Games 9

Outline

Contextual Games

Naive N-FPN

Scaling to large games

Contextual Traffic Routing

Naive N-FPN 10

Problem Formulation I

Recall the following:

I F ,
[
∇x1

u>1 · · · ∇xK
u>K
]>

is game gradient.

I PGD-type operator: R(x; d) , PC(x− αF (x; d)).

I NEs are FPs of R(· ; d).

Henceforth assume uk are unknown.

Proposal I

Use historical data {(d, x?d)} to learn operator FΘ such that if

x◦d = PC (x◦d − αFΘ(x◦d; d)) (6)

then x◦d ≈ x?d.

Similar ideas proposed in What game are we playing? Ling et al (2018);
End-to-End Learning and Intervention in Games Li et al (2020).

Naive N-FPN 11

Naive N-FPN

I Formalize this as an N-FPN NΘ : D → C.
I FΘ is a tunable operator (e.g. a neural network).
I Define TΘ(x; d) = PC(x− αFΘ(x; d)). Then:

NΘ(d) = x◦d where x◦d = TΘ(x◦; d) (7)

I N is an implicit depth neural network4.

Algorithm 1 Naive N-FPN

1: NΘ(d) : C Input data is d
2: x0, x1 ← x̃, n← 1, C Initializations
3: while ‖xn − xn−1‖ > ε or n = 1 C Loop to fixed point
4: xn+1 ← TΘ(xn; d) C Apply T update
5: n← n+ 1 C Increment counter
6: return xn C Output inference

4See also Implicit deep learning El Ghaoui et al (2019), Deep equilibrium models
Bai et al (2019) and many others.

Naive N-FPN 12

Backprop for N-FPN

I Recall: NΘ(d) = x◦d where x◦d = TΘ(x◦; d).

I Given data {(di, x?di)} the training problem is:

min
Θ

Ed∼D [`(NΘ(d), x?d)] ≈
∑

i

`
(
NΘ(di), x?di

)
(8)

I For gradient based training need:

d`

dΘ
=

d`

dx

dNΘ

dΘ
(chain rule.)

=
d`

dx

dx◦d
dΘ

=
d`

dx

(
Id− dTΘ

dx

)−1
∂TΘ

∂Θ
(implicit function theorem.)

I Computing/inverting Jacobian dTΘ

/
dx is computationally taxing.

Naive N-FPN 13

Jacobian-Free Backprop (JFB)

I Gradient:
d`

dΘ
=

d`

dx

(
Id− dTΘ

dx

)−1
∂TΘ

∂Θ
.

I In prior work5 we show p , d`

dx

∂TΘ

∂Θ
is a descent direction for `(Θ).

I JFB: Use p instead of d`
/
dΘ.

0 250 500 750 1,000
75

80

85

90

95

Jacobian-based
Backprop

Proposed Backprop (JFB)

Epoch

T
es
t
A
cc
u
ra
cy

%

0 10 20 30 40 50
75

80

85

90

95

Jacobian-based
Backprop

Proposed Backprop (JFB)

Time (hr)

T
es
t
A
cc
u
ra
cy

%

Figure: Training an implicit neural network on CIFAR10. JFB is faster and
yields higher test accuracy than Jacobian-based backprop.

5Fixed Point Networks Wu Fung et al (2021)
Naive N-FPN 14

Experimental Results I: Contextual RPS

I Recall game setup:

u1(x1) = x>1 B(d)x2 , u2(x2) = −x>1 B(d)x2 and C = ∆3×∆3 (9)

I Randomly generate di ∈ [0, 1]3. Solve exactly to obtain x?di .

I FΘ is residual, two-layer, fully connected network.

I N-FPN trained using JFB.

R P S
R 0 �

⌦
w1, d

↵ ⌦
w2, d

↵

P
⌦
w1, d

↵
0 �

⌦
w3, d

↵

S �
⌦
w2, d

↵ ⌦
w3, d

↵
0

�! B(d) ,

2
4

0 �
⌦
w1, d

↵ ⌦
w2, d

↵
⌦
w1, d

↵
0 �

⌦
w3, d

↵

�
⌦
w2, d

↵ ⌦
w3, d

↵
0

3
5

Table 2: Payoff matrix B(d) for contextual Rock-Paper-Scissors (RPS).

0 250 500 750 1 000

10�2

10�4

10�6

Epoch

T
es

t
M

S
E

0 5 000 10 000

101

100

10�1

10�2 Optimal vs Optimal

Optimal vs N-FPN

Optimal vs Uniform

Games Played k

A
b
s.

A
v
e.

C
os

t
y

k

Figure 2: Rock-paper-scissors example. Left plot shows N-FPN test loss during training. Right plot
shows the cost expression yk over the course of k games in three settings. The first player always acts
optimally, knowing both the true cost u1(·; d) and the second player’s strategy. The second player
either also acts optimally, chooses uniformly randomly, or uses N-FPN predictions only knowing d.
Both players acting optimally yields a Nash equilibrium, making yk ! 0. When the second player is
uniform, the first player typically wins. This plot shows the N-FPN player chooses nearly optimally.

5 Numerical Examples192

We show the efficacy of N-FPNs on two games types: rock-paper-scissors and traffic routing.193

5.1 Rock Paper Scissors194

We perform a rock-paper-scissors experiment similar to [36]. Each player’s actions are restricted195

to the unit simplex �3 , {x 2 R3
�0 : kxk1 = 1} ⇢ R3 so that C = �3 ⇥�3 and actions xi are196

interpreted as probability distributions over three choices: “rock”, “paper” and “scissors.” Equilibria197

x?
d are drawn from VI(F (· ; d), C), using the game gradient F in (8) with cost functions given by198

u1(x; d) , hx1, B(d)x2i and u2(x; d) , �hx1, B(d)x2i , (15)

where the payoff matrix B(d) 2 R3⇥3 (see Table 2) defines the players’ cost functions using199

wi 2 R3
�0. Contextual data d are drawn from a distribution D that is uniform over [0, 1]3. An N-200

FPN is trained to predict x?
d from d using training data context-action pairs {(di, x?

di)}1000
i=1 , without201

using knowledge of F . The tunable operator F⇥ in (10) consists of a residual update with two202

fully connected layers and a leaky ReLU activation. Forward propagation uses Algorithm 2. For203

illustration, we simulate play between two players. The first player acts optimally using knowledge204

of B(d) and the second player’s strategy. Three options are used for the second player: another205

optimal player, an N-FPN player that only has access to d, and uniform choices. With two optimal206

players, a Nash equilibria is obtained where the expected cost after each game is zero. If the N-FPN207

is well-trained, then the second case yields the same result. In the final case, the optimal player has208

an advantage, yielding first player costs less than zero (i.e. the first player usually wins). Here209

(Expected Abs. Nash Player k-Game Average Cost) ⌘ yk , Ed⇠D

"�����
1

k

kX

`=1

u1

�
s`; d

�
�����

#
, (16)

where sk is a tuple of two one-hot vectors (e.g. sk
1 ⇠ x?

d and sk
2 ⇠ N⇥(d)). If N⇥(d) = x?

d, then the210

expected cost u1 is zero and yk ! 0 (n.b. simulated games have nonzero variance due to one-hot211

sampling sk
i whereas x?

d is continuous). This behavior is illustrated in Figure 2.212

5.2 Contextual Traffic Routing213

Setup Consider a road network represented by a directed graph with vertices V and arcs E. Let214

N 2 R|V |⇥|E| denote the vertex-arc incidence matrix (see Appendix C.1). An origin-destination pair215

6

0 250 500 750 1 000

10−2

10−4

10−6

Epoch

T
es
t
M
S
E

0 5 000 10 000

101

100

10−1

10−2 Optimal vs Optimal

Optimal vs N-FPN

Optimal vs Uniform

Games Played k

A
b
s.

A
v
e.

C
os
t
y
k

Figure: Left: Cost matrix. wi are fixed. Middle: Test loss decreases rapidly
when using JFB. Right: Average cost of uniform random, N-FPN and optimal
player against an optimal player. Lower is better.

Naive N-FPN 15

Outline

Contextual Games

Naive N-FPN

Scaling to large games

Contextual Traffic Routing

Scaling to large games 16

The Primary Bottleneck is Projection

I Recall the following:

TΘ(x; d) = PC(x− αFΘ(x; d))

NΘ(d) = x◦d where x◦d = TΘ(x◦; d)

p =
d`

dx

∂TΘ

∂Θ
=

d`

dx

dPC
dx

∂

∂Θ
[x− αFΘ(x; d)]

I Forward pass requires PC . Backprop requires dPC
/
dx.

I For nice C (e.g. simplex) compute PC , dPC
/
dx in6 O(m) FLOPS7.

I General case8 requires O(m3) FLOPs to approx. to machine ε.

6Here m = dim(C).
7Fast projection onto the simplex Condat (2016)
8Optnet: Differentiable optimization as a layer Amos & Kolter (2018)

Scaling to large games 17

Revisiting N-FPN formulation

I In many cases C = C1 ∩ C2 where PC1 and PC2 are simple.

I Recall: x?d is a Nash Equilibrium ⇐⇒ x?d ∈ VI(F (· ; d), C).

I We show following equivalence:

x?d ∈ VI(F (· ; d), C) ⇐⇒ 0 ∈ F (x?d; d) + ∂δC1(x?d) + ∂δC2(x?d)

I Key idea9: ∂δC = ∂δC1 + ∂δC2 for polyhedral Ci.

9Theorem 23.8.1 in Convex analysis Rockafeller
Scaling to large games 18

Revisiting N-FPN formulation

I Define the operator:

T (x; d) , x− PC1(x) + PC2 (2PC1(x)− x− F (PC1(x); d)))

I Apply Davis-Yin splitting10:

0 ∈ F (x?d; d) + ∂δC1(x?d) + ∂δC2(x?d)

⇐⇒ x?d = PC1(z?d) where z?d = T (z?d ; d)

Proposal II

Use historical data {(d, x?d)} to learn operator FΘ such that if

x◦d = PC1(z◦d) where z◦d = TΘ(z◦d ; d) and

TΘ(x; d) , x− PC1(x) + PC2 (2PC1(x)− x− FΘ(PC1(x); d)))

then x◦d ≈ x?d.

10A three-operator splitting scheme . . . Davis & Yin (2017)
Scaling to large games 19

Full N-FPN

I Again, formalize this as N-FPN NΘ : D → C.
I FΘ is a tunable operator (e.g. a neural network).

NΘ(d) , PC1(z◦d) where z◦d = TΘ(z◦d ; d) and

TΘ(x; d) , x− PC1(x) + PC2 (2PC1(x)− x− FΘ(PC1(x); d)))

Algorithm 2 Nash Fixed Point Network (N-FPN)

1: NΘ(d) : C Input data d
2: z1 ← z̃, z0 ← z̃, n← 1 C Initialize
3: while ‖zn − zn−1‖ > ε or n = 1 C Loop till fixed point
4: xn+1 ← PC1(zn) C Project
5: yn+1 ← PC2(2xn+1 − zn −FΘ(xn+1; d)) C Project
6: zn+1 ← zn − xn+1 + yn+1 C Combine sequences
7: n← n+ 1 C Increment counter
8: return PC1(zn) C Output inference

Scaling to large games 20

Decoupling constraints is much cheaper

I A typical case: C = {x : Nx = bk}︸ ︷︷ ︸
C1

⋂
{x : x ≥ 0}︸ ︷︷ ︸

C2

.

I Computing PC1 exactly is O(m).

I Computing PC2 exactly is11 O(m2).

I Computing dPC1
/
dx and dPC2

/
dx handled by autodiff.

I Extend decoupling to multi-intersection: C = C1 ∩ · · · ∩ CK .

I Also extend to Minkowski sum:

C = C1
1 ∩ C2

1 + · · ·+ C1
K ∩ C2

K (10)

11There is a once-off cost of O(m3) for computing and storing SVD of N
Scaling to large games 21

Outline

Contextual Games

Naive N-FPN

Scaling to large games

Contextual Traffic Routing

Contextual Traffic Routing 22

Modelling large-scale traffic routing12

I Road network = directed graph. V = vertices, E = edges.
I N ∈ R|V |×|E| is incidence matrix.
I Aggregative game: agents are infinitesimal.
I OD-pair: (v1, v2, q). q units of traffic to be routed from v1 to v2.
I Vectorize to b ∈ R|V | where bv1 = q, bv2 = −q,bi = 0 if i 6= v1, v2.
I Traffic flow is x ∈ C where x[e] = (traffic density on road e) and

C = {x : Nx = b}︸ ︷︷ ︸
C1

∩{x : x ≥ 0}︸ ︷︷ ︸
C2

(11)

I Travel time operator: F : R|E| ×D → R|E| with Fe(x) , t(x[e]; d).

Wardrop’s First Principle

If players are self-interested then resulting flow satisfies
x?d ∈ VI(F (· ; d), C).

12The traffic assignment problem: models and methods Patriksson
Contextual Traffic Routing 23

Contextual traffic routing

I d captures global factors, e.g. weather.

I Typically t(x[e]; d) unknown.

I Extend to multiple OD pairs:

C = C1 + · · ·+ CK
Ck = {x : Nx = bk}︸ ︷︷ ︸

C1k

∩{x : x ≥ 0}︸ ︷︷ ︸
C2k

1 2

3 4

=⇒
Utilization

– 0%

– 125%

– 250%

1 2

3 4

Width shows edge capacity

=⇒

Figure: Predicted traffic flow on
a sunny and rainy day.

Proposal III

Use historical data {(d, x?d)} to train N-FPN NΘ such that
NΘ(d) ≈ x?d.

(Somewhat) similar ideas proposed in Data-driven estimation in
equilibrium using inverse optimization Bertsimas et al (2015) and others.

Contextual Traffic Routing 24

New contextual traffic routing dataset

I Used road networks for real cities13 (Anaheim, Berlin . . .).

I Fixed travel-time function t(x[e]; d).

I Generated random di for i = 1, . . . 5.5K.

I Solved VI(F (· ; d), C)to obtain x?di .

I Data available at Git repo.

13From Transportation Networks for Research
Contextual Traffic Routing 25

Example II: Contextual Traffic Routing

I FΘ is 2–3 layer fully connected N-FPN (∼ 100K trainable params.)

I N-FPN trained using JFB.

I Given x◦d = N (d) quantify accuracy as

TRAFIX(x◦d, x
?
d) , # {e ∈ E : |x◦d[e]− x?d[e]| < ε|x?d[e]|}

|E|

dataset edges/nodes OD-pairs TRAFIX score

Sioux Falls 76/24 528 0.94
Eastern Mass. 258/74 1113 0.97

Berlin-Friedrichshain 523/224 506 0.97
Berlin-Tiergarten 766/361 644 0.95

Anaheim 914/416 1406 0.95

Table: Results of using N-FPN to predict traffic flows. For TRAFIX score,
ε = 5× 10−3.

Contextual Traffic Routing 26

Thank you!

Papers:

I Wu Fung, Heaton, Li, McKenzie, Osher & Yin: Fixed Point
Networks: Implicit Depth Models with Jacobian-Free Backprop.

I Heaton, McKenzie, Li, Wu Fung, Osher & Yin: Learn to Predict
Equilibria via Fixed Point Networks.

Code:

I https://github.com/howardheaton/nash_fixed_point_networks

I https://github.com/howardheaton/fixed_point_networks

Contextual Traffic Routing 27

https://github.com/howardheaton/nash_fixed_point_networks
https://github.com/howardheaton/fixed_point_networks

	Contextual Games
	Naive N-FPN
	Scaling to large games
	Contextual Traffic Routing

