Learning to predict Nash equilibria from data using fixed point networks SIAM OP21

Howard Heaton¹, Daniel McKenzie¹, Qiuwei Li¹, Samy Wu Fung¹, Stanley Osher¹ and Wotao Yin²

¹University of California, Los Angeles

²Alibaba DAMO Academy

July 20, 2021

Overview

- \triangleright Study games depending on external parameter d.
- ightharpoonup Wish to predict outcome of game knowing only d.
- ▶ Reduce game to variational inequality then to fixed point problem.
- ► Train neural network to solve FP problem.

Papers and Code

- Wu Fung, Heaton, Li, McKenzie, Osher & Yin: FPN's: Implicit Depth Models with Jacobian-Free Backprop.
- https://github.com/howardheaton/nash_fixed_point_networks
- Heaton, McKenzie, Li, Wu Fung, Osher & Yin: Learn to Predict Equilibria via Fixed Point Networks.
- https://github.com/howardheaton/fixed_point_networks

Outline

Contextual Games

Naive N-FPN

Scaling to large games

Contextual Traffic Routing

Contextual Games 4

Contextual Games

- ► Consider game with *K* interacting agents.
- ► Contextual¹: d represents factors beyond agents' control.
- Agent k chooses x_k . Incurs cost $u_k(x_k, x_{-k}; d)$.
- ▶ All agents self-interested; seek to minimize u_k .

Nash Equilibrium (NE)

 $x_d^\star = \left[x_{d,1}^\star \cdots x_{d,K}^\star\right]$ is a NE if no agent can decrease their cost by unilaterally deviating.

¹Contextual Games: Multi-Agent Learning with Side Information Sessa et al (2020) Contextual Games

Example: Contextual Rock, Paper, Scissors

- ightharpoonup K=2. Available actions = $\{R,P,S\}$ for k=1,2.
- ► Payoff *parametrized* by *d*:

$$u_1(x_1) = x_1^{\top} B(d) x_2$$
 and $u_2(x_2) = -x_1^{\top} B(d) x_2$ (1)

▶ Mixed strategies: $x_k \in \Delta^3 = \{x \in \mathbb{R}^3 : x \geq 0 \text{ , } \sum x[i] = 1\}$

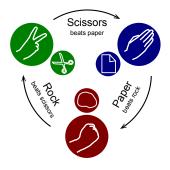


Figure: By Enzoklop - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=27958688

	R	P	S
R	0	-1	1
P	1	0	-1
S	-1	1	0

	R	P	S
R	0	$-\langle w^1, d \rangle$	$\langle w^2, d \rangle$
P	$\langle w^1, d \rangle$	0	$-\langle w^3, d\rangle$
S	$-\langle w^2, d \rangle$	$\langle w^3, d \rangle$	0

Figure: Payoff/cost matrices for classical RPS (top) and contextual RPS (bottom)

Technical Slide: Assumptions and Notation

- Assume $u_k(\cdot, x_{-k}; d)$ convex and smooth for all x_{-k}, d .
- ▶ Action set: $x_k \in \mathcal{V}_k \subset \mathcal{X}_k$ where:
 - \mathcal{X}_k Hilbert space.
 - \mathcal{V}_k compact and convex.
- $\triangleright \mathcal{C} \triangleq \mathcal{V}_1 \times \cdots \times \mathcal{V}_k$
- ► Reserve *F* for **game gradient**:

$$F(x;d) \triangleq \left[\nabla_{x_1} u_1(x;d)^\top, \dots, \nabla_{x_K} u_K(x;d)^\top \right]^\top.$$
 (2)

• Assume $F(\cdot;d)$ is α -cocoercive:

$$\langle F(x;d) - F(y;d), x - y \rangle \ge \alpha \|F(x;d) - F(y;d)\|^2$$
, for all x,y

▶ Data space: $d \in \mathcal{D}$.

Reducing to Fixed Points

Variational Inequality (VI) Problem

Find $x_d^{\circ} \in \mathcal{C}$ such that:

$$\langle F(x_d^{\circ}; d), x - x_d^{\circ} \rangle \ge 0, \quad \text{for all } x \in \mathcal{C}.$$
 (3)

$$\mathrm{VI}(F(\cdot\ ;d),\mathcal{C})=\{\text{all such }x_d^{\circ}\}.$$

We have the following equivalence²:

$$x_d^{\circ}$$
 is a Nash Equilibrium $\iff x_d^{\circ} \in \operatorname{VI}(F(\cdot;d),\mathcal{C}).$ (4)

 $^{^2}$ Prop. 1.4.2 in *Finite-dimensional variational inequalities* Facchinei & Pang Contextual Games

Reducing to Fixed Points

Consider PGD-type operator:

$$R(x;d) \triangleq P_{\mathcal{C}}(x - \alpha F(x;d)),$$
 (5)

- ► The indicator function $\delta_{\mathcal{C}}(x) \triangleq \left\{ \begin{array}{ll} 0 & \text{if } x \in \mathcal{C} \\ +\infty & \text{otherwise} \end{array} \right.$ is convex.
- ▶ Subgradient $\partial \delta_C$ also known as **normal cone operator**.
- ► We have the following equivalence³:

$$x_d^\circ \in \operatorname{VI}(F(\cdot \ ; d), \mathcal{C}) \iff 0 \in F(x_d^\circ; d) + \partial \delta_{\mathcal{C}}(x^\circ) \iff x_d^\circ = R(x_d^\circ; d).$$

▶ Find NE by finding FP of $R(\cdot;d)$.

 $^{^3}$ Chpt. 12 in Finite-dimensional variational inequalities Facchinei & Pang Contextual Games

Outline

Contextual Games

Naive N-FPN

Scaling to large games

Contextual Traffic Routing

Naive N-FPN 10

Problem Formulation I

Recall the following:

- $\blacktriangleright \ F \triangleq \left[\nabla_{x_1} u_1^\top \cdots \nabla_{x_K} u_K^\top \right]^\top \text{ is game gradient.}$
- ▶ PGD-type operator: $R(x;d) \triangleq P_{\mathcal{C}}(x \alpha F(x;d))$.
- ▶ NEs are FPs of $R(\cdot;d)$.

Henceforth assume u_k are unknown.

Proposal I

Use historical data $\{(d,x_d^\star)\}$ to learn operator F_Θ such that if

$$x_d^{\circ} = P_{\mathcal{C}} \left(x_d^{\circ} - \alpha F_{\Theta}(x_d^{\circ}; d) \right) \tag{6}$$

then $x_d^{\circ} \approx x_d^{\star}$.

Similar ideas proposed in What game are we playing? Ling et al (2018); End-to-End Learning and Intervention in Games Li et al (2020).

Naive N-FPN 11

Naive N-FPN

- ▶ Formalize this as an N-FPN $\mathcal{N}_{\Theta}: \mathcal{D} \to \mathcal{C}$.
- ▶ F_{Θ} is a tunable operator (e.g. a neural network).
- ▶ Define $T_{\Theta}(x;d) = P_{\mathcal{C}}(x \alpha F_{\Theta}(x;d))$. Then:

$$\mathcal{N}_{\Theta}(d) = x_d^{\circ} \text{ where } x_d^{\circ} = T_{\Theta}(x^{\circ}; d)$$
 (7)

 \triangleright \mathcal{N} is an **implicit depth neural network**⁴.

Algorithm 1 Naive N-FPN

	$\mathcal{N}_{\Theta}(d)$:	\lhd Input data is d
2:	$x^0, x^1 \leftarrow \tilde{x}, n \leftarrow 1,$	\lhd Initializations
3:	while $ x^n - x^{n-1} > \varepsilon$ or $n = 1$	\lhd Loop to fixed point
4:	$x^{n+1} \leftarrow T_{\Theta}(x^n; d)$	$\lhd Apply\ T$ update
5:	$n \leftarrow n + 1$	
6:	return x^n	⊲ Output inference

⁴See also *Implicit deep learning* El Ghaoui *et al* (2019), *Deep equilibrium models* Bai *et al* (2019) and many others.

Backprop for N-FPN

- ▶ Recall: $\mathcal{N}_{\Theta}(d) = x_d^{\circ}$ where $x_d^{\circ} = T_{\Theta}(x^{\circ}; d)$.
- ▶ Given data $\{(d^i, x_{d^i}^*)\}$ the training problem is:

$$\min_{\Theta} \mathbb{E}_{d \sim \mathcal{D}} \left[\ell(\mathcal{N}_{\Theta}(d), x_d^{\star}) \right] \approx \sum_{i} \ell\left(\mathcal{N}_{\Theta}(d^i), x_{d^i}^{\star}\right) \tag{8}$$

For gradient based training need:

$$\begin{split} \frac{\mathrm{d}\ell}{\mathrm{d}\Theta} &= \frac{\mathrm{d}\ell}{\mathrm{d}x} \frac{\mathrm{d}\mathcal{N}_{\Theta}}{\mathrm{d}\Theta} \quad \textit{(chain rule.)} \\ &= \frac{\mathrm{d}\ell}{\mathrm{d}x} \frac{\mathrm{d}x_{d}^{*}}{\mathrm{d}\Theta} \\ &= \frac{\mathrm{d}\ell}{\mathrm{d}x} \left(\mathrm{Id} - \frac{dT_{\Theta}}{dx} \right)^{-1} \frac{\partial T_{\Theta}}{\partial \Theta} \quad \textit{(implicit function theorem.)} \end{split}$$

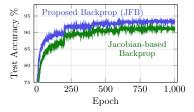
lacktriangleright Computing/inverting Jacobian dT_{Θ}/dx is computationally taxing.

Naive N-FPN 13

Jacobian-Free Backprop (JFB)

► Gradient:
$$\frac{\mathrm{d}\ell}{\mathrm{d}\Theta} = \frac{\mathrm{d}\ell}{\mathrm{d}x} \left(\mathrm{Id} - \frac{dT_{\Theta}}{dx} \right)^{-1} \frac{\partial T_{\Theta}}{\partial \Theta}.$$

- ▶ In prior work⁵ we show $p \triangleq \frac{\mathrm{d}\ell}{\mathrm{d}x} \frac{\partial T_{\Theta}}{\partial \Theta}$ is a descent direction for $\ell(\Theta)$.
- ▶ JFB: Use p instead of $d\ell/d\Theta$.



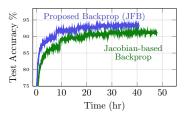


Figure: Training an implicit neural network on CIFAR10. JFB is faster and yields higher test accuracy than Jacobian-based backprop.

⁵ Fixed Point Networks Wu Fung et al (2021) Naive N-FPN

Experimental Results I: Contextual RPS

Recall game setup:

$$u_1(x_1)=x_1^\top B(d)x_2$$
 , $u_2(x_2)=-x_1^\top B(d)x_2$ and $\mathcal{C}=\Delta^3\times\Delta^3$ (9)

- ▶ Randomly generate $d^i \in [0,1]^3$. Solve exactly to obtain $x_{d^i}^{\star}$.
- $ightharpoonup F_{\Theta}$ is residual, two-layer, fully connected network.
- ► N-FPN trained using JFB.

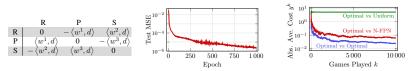


Figure: Left: Cost matrix. w^i are fixed. Middle: Test loss decreases rapidly when using JFB. Right: Average cost of uniform random, N-FPN and optimal player against an optimal player. Lower is better.

Naive N-FPN 15

Outline

Contextual Games

Naive N-FPN

Scaling to large games

Contextual Traffic Routing

The Primary Bottleneck is Projection

Recall the following:

$$\begin{split} T_{\Theta}(x;d) &= P_{\mathcal{C}}(x - \alpha F_{\Theta}(x;d)) \\ \mathcal{N}_{\Theta}(d) &= x_d^{\circ} \text{ where } x_d^{\circ} = T_{\Theta}(x^{\circ};d) \\ p &= \frac{\mathrm{d}\ell}{\mathrm{d}x} \frac{\partial T_{\Theta}}{\partial \Theta} = \frac{\mathrm{d}\ell}{\mathrm{d}x} \frac{\mathrm{d}P_{\mathcal{C}}}{\mathrm{d}x} \frac{\partial}{\partial \Theta} \left[x - \alpha F_{\Theta}(x;d) \right] \end{split}$$

- ▶ Forward pass requires $P_{\mathcal{C}}$. Backprop requires $dP_{\mathcal{C}}/dx$.
- ▶ For nice C (e.g. simplex) compute P_C , dP_C/dx in 6 O(m) FLOPS 7 .
- ▶ General case⁸ requires $\mathcal{O}(m^3)$ FLOPs to approx. to machine ε .

⁶Here $m = \dim(\mathcal{C})$.

⁷Fast projection onto the simplex Condat (2016)

⁸Optnet: Differentiable optimization as a layer Amos & Kolter (2018)

Revisiting N-FPN formulation

- ▶ In many cases $C = C^1 \cap C^2$ where P_{C^1} and P_{C^2} are simple.
- ▶ Recall: x_d^{\star} is a Nash Equilibrium $\iff x_d^{\star} \in VI(F(\cdot;d),\mathcal{C}).$
- ▶ We show following equivalence:

$$x_d^{\star} \in \operatorname{VI}(F(\cdot \; ; d), \mathcal{C}) \iff 0 \in F(x_d^{\star}; d) + \partial \delta_{\mathcal{C}^1}(x_d^{\star}) + \partial \delta_{\mathcal{C}^2}(x_d^{\star})$$

► Key idea⁹: $\partial \delta_{\mathcal{C}} = \partial \delta_{\mathcal{C}^1} + \partial \delta_{\mathcal{C}^2}$ for polyhedral \mathcal{C}^i .

 $^{^9{}m Theorem~23.8.1~in~\it Convex~analysis}$ Rockafeller Scaling to large games

Revisiting N-FPN formulation

Define the operator:

$$T(x;d) \triangleq x - P_{\mathcal{C}^1}(x) + P_{\mathcal{C}^2}(2P_{\mathcal{C}^1}(x) - x - F(P_{\mathcal{C}^1}(x);d)))$$

► Apply Davis-Yin splitting¹⁰:

$$\begin{split} 0 \in F(x_d^\star; d) + \partial \delta_{\mathcal{C}^1}(x_d^\star) + \partial \delta_{\mathcal{C}^2}(x_d^\star) \\ \iff x_d^\star = P_{\mathcal{C}^1}(z_d^\star) \text{ where } z_d^\star = T(z_d^\star; d) \end{split}$$

Proposal II

Use historical data $\{(d, x_d^{\star})\}$ to learn operator F_{Θ} such that if

$$\begin{split} x_d^\circ &= P_{\mathcal{C}^1}(z_d^\circ) \text{ where } z_d^\circ = T_\Theta(z_d^\circ;d) \text{ and} \\ T_\Theta(x;d) &\triangleq x - P_{\mathcal{C}^1}(x) + P_{\mathcal{C}^2}\left(2P_{\mathcal{C}^1}(x) - x - F_\Theta(P_{\mathcal{C}^1}(x);d)\right)) \end{split}$$

then $x_d^{\circ} \approx x_d^{\star}$.

Full N-FPN

- ▶ Again, formalize this as N-FPN $\mathcal{N}_{\Theta}: \mathcal{D} \to \mathcal{C}$.
- ▶ F_{Θ} is a tunable operator (e.g. a neural network).

$$\begin{split} \mathcal{N}_{\Theta}(d) &\triangleq P_{\mathcal{C}^1}(z_d^\circ) \text{ where } z_d^\circ = T_{\Theta}(z_d^\circ;d) \text{ and} \\ T_{\Theta}(x;d) &\triangleq x - P_{\mathcal{C}^1}(x) + P_{\mathcal{C}^2}\left(2P_{\mathcal{C}^1}(x) - x - F_{\Theta}(P_{\mathcal{C}^1}(x);d)\right)) \end{split}$$

Algorithm 2 Nash Fixed Point Network (N-FPN)

```
1: \mathcal{N}_{\Theta}(d):
                                                                      \triangleleft Input data d
2: z^1 \leftarrow \tilde{z}, \ z^0 \leftarrow \tilde{z}, \ n \leftarrow 1

⊲ Initialize

3: while ||z^n - z^{n-1}|| > \varepsilon or n = 1

    □ Loop till fixed point

4: x^{n+1} \leftarrow P_{\mathcal{C}^1}(z^n)

⊲ Project

5: u^{n+1} \leftarrow P_{\mathcal{C}^2}(2x^{n+1} - z^n - F_{\Theta}(x^{n+1}; d))

⊲ Project

6: z^{n+1} \leftarrow z^n - x^{n+1} + y^{n+1}
                                                                      7:
      n \leftarrow n + 1
                                                                      return P_{\mathcal{C}^1}(z^n)
8:
                                                                      Output inference
```

Decoupling constraints is much cheaper

A typical case:
$$C = \underbrace{\{x: Nx = b_k\}}_{C^1} \bigcap \underbrace{\{x: x \geq 0\}}_{C^2}.$$

- ▶ Computing $P_{\mathcal{C}^1}$ exactly is $\mathcal{O}(m)$.
- ▶ Computing $P_{\mathcal{C}^2}$ exactly is 11 $\mathcal{O}(m^2)$.
- ▶ Computing $dP_{\mathcal{C}^1}/dx$ and $dP_{\mathcal{C}^2}/dx$ handled by autodiff.
- lacktriangle Extend decoupling to multi-intersection: $\mathcal{C} = \mathcal{C}^1 \cap \cdots \cap \mathcal{C}^K$.
- Also extend to Minkowski sum:

$$\mathcal{C} = \mathcal{C}_1^1 \cap \mathcal{C}_1^2 + \dots + \mathcal{C}_K^1 \cap \mathcal{C}_K^2 \tag{10}$$

 $^{^{11} \}mbox{There}$ is a once-off cost of $\mathcal{O}(m^3)$ for computing and storing SVD of N Scaling to large games

Outline

Contextual Games

Naive N-FPN

Scaling to large games

Contextual Traffic Routing

Modelling large-scale traffic routing¹²

- ▶ Road network = directed graph. V = vertices, E = edges.
- $N \in \mathbb{R}^{|V| \times |E|}$ is incidence matrix.
- ► Aggregative game: agents are infinitesimal.
- ▶ **OD-pair**: (v_1, v_2, q) . q units of traffic to be routed from v_1 to v_2 .
- $lackbox{ Vectorize to }b\in\mathbb{R}^{|V|}$ where $b_{v_1}=q$, $b_{v_2}=-q$, $b_i=0$ if $i\neq v_1,v_2$.
- ▶ Traffic flow is $x \in \mathcal{C}$ where x[e] = (traffic density on road e) and

$$C = \underbrace{\{x : Nx = b\}}_{\mathcal{C}^1} \cap \underbrace{\{x : x \ge 0\}}_{\mathcal{C}^2} \tag{11}$$

▶ Travel time operator: $F: \mathbb{R}^{|E|} \times \mathcal{D} \to \mathbb{R}^{|E|}$ with $F_e(x) \triangleq t(x[e]; d)$.

Wardrop's First Principle

If players are self-interested then resulting flow satisfies $x_d^\star \in \mathrm{VI}(F(\cdot\ ; d), \mathcal{C}).$

¹² The traffic assignment problem: models and methods Patriksson Contextual Traffic Routing

Contextual traffic routing

- ▶ d captures global factors, e.g. weather.
- ▶ Typically t(x[e];d) unknown.
- Extend to multiple OD pairs:

$$C = C_1 + \dots + C_K$$

$$C_k = \underbrace{\{x : Nx = b^k\}}_{C_k^1} \cap \underbrace{\{x : x \ge 0\}}_{C_k^2}$$

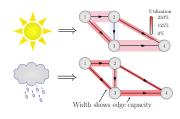


Figure: Predicted traffic flow on a sunny and rainy day.

Proposal III

Use historical data $\{(d,x_d^\star)\}$ to train N-FPN \mathcal{N}_Θ such that $\mathcal{N}_\Theta(d) \approx x_d^\star.$

(Somewhat) similar ideas proposed in *Data-driven estimation in* equilibrium using inverse optimization Bertsimas et al (2015) and others.

New contextual traffic routing dataset

- ▶ Used road networks for real cities¹³ (Anaheim, Berlin ...).
- ▶ Fixed travel-time function t(x[e]; d).
- ▶ Generated random d^i for i = 1, ... 5.5K.
- ▶ Solved VI($F(\cdot;d), \mathcal{C}$)to obtain $x_{d^i}^{\star}$.
- Data available at Git repo.

¹³From Transportation Networks for Research Contextual Traffic Routing

Example II: Contextual Traffic Routing

- ▶ F_{Θ} is 2–3 layer fully connected N-FPN (~ 100 K trainable params.)
- N-FPN trained using JFB.
- Given $x_d^{\circ} = \mathcal{N}(d)$ quantify accuracy as

$$\mathsf{TRAFIX}(x_d^\circ, x_d^\star) \triangleq \frac{\#\left\{e \in E : |x_d^\circ[e] - x_d^\star[e]| < \varepsilon |x_d^\star[e]|\right\}}{|E|}$$

dataset	edges/nodes	OD-pairs	TRAFIX score
Sioux Falls	76/24	528	0.94
Eastern Mass.	258/74	1113	0.97
Berlin-Friedrichshain	523/224	506	0.97
Berlin-Tiergarten	766/361	644	0.95
Anaheim	914/416	1406	0.95

Table: Results of using N-FPN to predict traffic flows. For TRAFIX score, $\varepsilon=5\times 10^{-3}$.

Thank you!

Papers:

- Wu Fung, Heaton, Li, McKenzie, Osher & Yin: Fixed Point Networks: Implicit Depth Models with Jacobian-Free Backprop.
- ► Heaton, McKenzie, Li, Wu Fung, Osher & Yin: Learn to Predict Equilibria via Fixed Point Networks.

Code:

- https://github.com/howardheaton/nash_fixed_point_networks
- https://github.com/howardheaton/fixed_point_networks