Learning to predict Nash equilibria from data using
fixed point networks
SIAM OP21

Howard Heaton!, Daniel McKenzie!, Qiuwei Li*, Samy Wu Fung?,
Stanley Osher! and Wotao Yin?

LUniversity of California, Los Angeles

2Alibaba DAMO Academy

July 20, 2021

Overview

» Study games depending on external parameter d.

» Wish to predict outcome of game knowing only d.

» Reduce game to variational inequality then to fixed point problem.
» Train neural network to solve FP problem.

Papers and Code

» Wu Fung, Heaton, Li, McKenzie, Osher & Yin:
FPN'’s: Implicit Depth Models with Jacobian-Free Backprop.

» https://github.com/howardheaton/nash_fixed_point_networks

» Heaton, McKenzie, Li, Wu Fung, Osher & Yin:
Learn to Predict Equilibria via Fixed Point Networks.

» https://github.com/howardheaton/fixed_point_networks

https://github.com/howardheaton/nash_fixed_point_networks
https://github.com/howardheaton/fixed_point_networks

Outline

Contextual Games

Contextual Games

Contextual Games

» Consider game with K interacting agents.

» Contextual®: d represents factors beyond agents’ control.
> Agent k chooses xy. Incurs cost ug(xg, x_g;d).

> All agents self-interested; seek to minimize uy.

Nash Equilibrium (NE)

xh = [de e xgyK} is a NE if no agent can decrease their cost by
unilaterally deviating.

1 Contextual Games: Multi-Agent Learning with Side Information Sessa et al (2020)
Contextual Games

Example: Contextual Rock, Paper, Scissors

» K = 2. Available actions = {R, P, S} for k =1,2.
» Payoff parametrized by d:

ui(z1) =z B(d)zy and ug(xo) = —z] B(d)xs (1)
> Mixed strategies: z, € A> ={z € R*: 2 >0, x| =1}

Smssors R P S

beats paper R 0 —1 1

P 1 0 -1

% S -1 1 0

. R P S
43 R0 —(uhd) (u’d)

% K @ P| (wid) 0 —(ub

% S| — <w2, d> <w3, d> 0

Figure: Payoff/cost matrices for
Figure: By Enzokiop - Own work, CC BY-SA 3.0, classical RPS (top) and contextual RPS

https://commons.wikimedia.org/w/index. php?curid=27958688 (bottom)

Contextual Games

https://commons.wikimedia.org/w/index.php?curid=27958688

Technical Slide: Assumptions and Notation

» Assume ug (-, x_g; d) convex and smooth for all z_y,d.
» Action set: x;, € V. C X} where:

— X Hilbert space.
— Vi compact and convex.

> CE2V; x--- XV,
Reserve F' for game gradient:

v

F(zid) 2 Ve (2;d) 7, .., Vagur (3d) 7] (2)

» Assume F(- ;d) is a-cocoercive:
(F(x;d) = F(y;d),x —y) > af|[F(z;d) — F(y;d)|]?, forall a,y

» Data space: d € D.

Contextual Games

Reducing to Fixed Points

Variational Inequality (VI) Problem

Find x5 € C such that:
(F(zg;d),x —xg) >0, forall zeC. (3)

VI(F(- ;d),C) = {all such z3}.

We have the following equivalence?:

xg is a Nash Equilibrium < zj € VI(F(- ;d),C). (4)

2Prop. 1.4.2 in Finite-dimensional variational inequalities Facchinei & Pang
Contextual Games

Reducing to Fixed Points

» Consider PGD-type operator:

R(z;d) £ Pe(x — aF (x;d)), (5)

A { 0 fzeC .
IS CoOnvex.

» The indicator function d¢(z) = too otherwise

» Subgradient 0§ also known as normal cone operator.
» We have the following equivalence3:
xg € VI(F(- ;d),C) <= 0¢€ F(xg;d)+0c(x°) < x5 = R(zg;d).

» Find NE by finding FP of R(- ;d).

3Chpt. 12 in Finite-dimensional variational inequalities Facchinei & Pang
Contextual Games

Naive N-FPN

Naive N-FPN

Outline

10

Problem Formulation |

Recall the following:
> F2[Vyu - VJCKuIT(]T is game gradient.
» PGD-type operator: R(x;d) 2 Pe(x — aF (x;d)).
» NEs are FPs of R(- ;d).

Henceforth assume w;, are unknown.

Proposal |

Use historical data {(d, z})} to learn operator Fg such that if
xg = Pc (x3 — aFe(xg;d)) (6)

O AU ok
then 23 ~ z7.

Similar ideas proposed in What game are we playing? Ling et al (2018);
End-to-End Learning and Intervention in Games Li et al (2020).

Naive N-FPN 11

Naive N-FPN

» Formalize this as an N-FPN Ng : D — C.
» Fo is a tunable operator (e.g. a neural network).
» Define To(z;d) = Pe(x — aFg(z;d)). Then:

No(d) = x5 where 2§ = To(z°;d) (7)

» N is an implicit depth neural network®.

Algorithm 1 Naive N-FPN

1 Ne(d) : < Input data is d

20 2% 2l % ne1, < Initializations

3. while [[z2" — 2"l >eorn=1 < Loop to fixed point
4; 2"t To(2™;d) < Apply T update

5: n<—n+1 < Increment counter
6: return z" <1 Output inference

4See also Implicit deep learning El Ghaoui et al (2019), Deep equilibrium models
Bai et al (2019) and many others.
Naive N-FPN

12

Backprop for N-FPN

> Recall: No(d) = x5 where z§ = T (2°;d).
> Given data {(d’,z%,)} the training problem is:

In@inEdND[(N@(Zé N@ dz) ‘Td7)

» For gradient based training need:

d¢ dldNe
— hain rule.
96~ 4z do (chain rule.)
_ dfdag
~ dx dO
o dTe\ " 9Te , . . :
=% <Id - dsc> 50 (implicit function theorem.)

» Computing/inverting Jacobian dT@/dx is computationally taxing.

Naive N-FPN

(8)

13

Jacobian-Free Backprop (JFB)

dx
T
» In prior work® we show p £ j—faag
x

> JFB: Use p instead of d¢/dO.

» Gradient: iﬂ — 50

_de (L dTe\ TN 9T
40 ~ dr

is a descent direction for £(©).

T T T T
| Proposed Backprop (JFB)

R 4 l Pmposéd Backp‘mp (JFB‘) R 45
£ 90 |- d g 90 [i
g o L Jacobian-based | g s Jacobian-based |
< Backprop < Backprop
% 80 7 7 80 N
& &
75 L | | | 75 | | | | |
0 250 500 750 1,000 0 10 20 30 40 50
Epoch Time (hr)

Figure: Training an implicit neural network on CIFAR10. JFB is faster and
yields higher test accuracy than Jacobian-based backprop.

5Fixed Point Networks Wu Fung et al (2021)
Naive N-FPN

Experimental Results I: Contextual RPS

» Recall game setup:
ui(z1) =z B(d)xy , us(xe) = —x{ B(d)zy and C = A% x A3 (9)
> Randomly generate d' € [0, 1]. Solve exactly to obtain z%,.

» Fg is residual, two-layer, fully connected network.
» N-FPN trained using JFB.

S 0 T |
01072 N % Optimal vs Uniform
R P S =2} - o il
1 2 - 5 Optimal vs N-FPN
R 0 —(whdy (wdy - f iy €101 I i
]S) <""12>‘j 03 . — <46;3,d> & A ‘] ‘ | im*? |, Optimal vs Optimal i
—{whd) (w?d) 070250 500 750 1000 Z 0 5000 10000
Epoch Games Played k

Figure: Left: Cost matrix. w' are fixed. Middle: Test loss decreases rapidly
when using JFB. Right: Average cost of uniform random, N-FPN and optimal
player against an optimal player. Lower is better.

Naive N-FPN

15

Scaling to large games

Scaling to large games

Outline

16

The Primary Bottleneck is Projection

» Recall the following:

To(z;d) = Pe(x — aFo(z; d))
No(d) = x5 where 25 = To(2°;d)
_ dlOTe dldP:

P=190 — dz dx 90 [z — aFg(z;d)]

» Forward pass requires Pe. Backprop requires ch/dgc.
> For nice C (e.g. simplex) compute P¢,dFc /dx in® O(m) FLOPS'.
» General case® requires O(m?) FLOPs to approx. to machine .

SHere m = dim(C).
7 Fast projection onto the simplex Condat (2016)
8Optnet: Differentiable optimization as a layer Amos & Kolter (2018)

Scaling to large games 17

Revisiting N-FPN formulation

» In many cases C = C' N C? where Pe1 and Pp2 are simple.
» Recall: 23 is a Nash Equilibrium <= z} € VI(F(- ;d),C).

» We show following equivalence:
xy € VI(F(- ;d),C) < 0¢€ F(a};d) + dd¢ci(x)) + Odc=(x})

> Key idea’: 08¢ = 061 + Od¢2 for polyhedral C*.

9Theorem 23.8.1 in Convex analysis Rockafeller
Scaling to large games

18

Revisiting N-FPN formulation

» Define the operator:
T(z;d) £ 2 — Poi(x) + Pe2 (2Pp1(7) — 2 — F(Pei(2);d)))
» Apply Davis-Yin splitting!?:

0 € F(z};d) + ddci(x)) + Oz (x})
<=) = Pei(z)) where 2 = T(z};d)

Proposal Il

Use historical data {(d, z})} to learn operator Fig such that if

xg = Pei(zg) where z§ = To(z3;d) and
To(z;d) £ & — Pei(x) + Pez (2P (z) — x — Fo(Pe(); d)))

O AU K
then 23 ~ 27

10 A three-operator splitting scheme ... Davis & Yin (2017)
Scaling to large games 19

Full N-FPN

» Again, formalize this as N-FPN Ng : D — C.
> Fg is a tunable operator (e.g. a neural network).

No(d) £ Pei(z) where 25 = Te(z3;d) and
T@(l‘; d) Ly Peu (.’E) + Pe2 (2P(31 (ac) - — F@(Pcl (ac),d)))

Algorithm 2 Nash Fixed Point Network (N-FPN)

1 No(d): < Input data d

20 2tz 20z nel < Initialize

3. while [[2" — 2" || >corn=1 < Loop till fixed point
4: 2" Poi(2™) < Project

5: Yyt Ppa (22 — 2" — Fo(2™t1;d)) < Project

6 2l pn gl gndd <1 Combine sequences
7 n—n+1l <l Increment counter
8 return Pei(z") <1 Output inference

Scaling to large games 20

Decoupling constraints is much cheaper

> A typical case: C = {z : Nz = bk}ﬂ{x cx > 0}.

ct c2
Computing Pe1 exactly is O(m).

| 4
» Computing P> exactly is't O(m?).

> Computing dPc1 /dx and dP¢2 /dz handled by autodiff.

» Extend decoupling to multi-intersection: C =C' n---NCK.
>

Also extend to Minkowski sum:

C=CiNC+ - +CxNCi

HThere is a once-off cost of O(m?3) for computing and storing SVD of N
Scaling to large games

(10)

21

Contextual Traffic Routing

Contextual Traffic Routing

Outline

22

Modelling large-scale traffic routing?!?

» Road network = directed graph. V = vertices, E' = edges.

» N e RIVIXIEl is incidence matrix.

> Aggregative game: agents are infinitesimal.

» OD-pair: (v1,v2,q). g units of traffic to be routed from vy to vs.

> Vectorize to b € RIV! where b,, = ¢, b,, = —q,b; = 0 if i # vy, vo.

» Traffic flow is © € C where z[e] = (traffic density on road ¢) and
C={z:Nz=b}n{zx:z >0} (11)

ct c2

> Travel time operator: F: RI®I x D — RIFl with F.(x) £ t(z[e]; d).

Wardrop's First Principle

If players are self-interested then resulting flow satisfies
x5 € VI(F(- ;d),C).

12 The traffic assignment problem: models and methods Patriksson
Contextual Traffic Routing

Contextual traffic routing
» d captures global factors, e.g. weather.
> Typically ¢(z[e]; d) unknown.
» Extend to multiple OD pairs:

C=Ci+-+Cx
Cp={z:Nzx=bt"}n{z:2>0}

Ci

Width shows edge capacity

CQ
k Figure: Predicted traffic flow on

a sunny and rainy day.

Proposal Il

Use historical data {(d, z})} to train N-FPN Ng such that

(Somewhat) similar ideas proposed in Data-driven estimation in
equilibrium using inverse optimization Bertsimas et al (2015) and others.
Contextual Traffic Routing 24

New contextual traffic routing dataset

Used road networks for real cities'® (Anaheim, Berlin ...
Fixed travel-time function t(z[e]; d).

Generated random d* fori = 1,...5.5K.

Solved VI(F(- ;d),C)to obtain x;.

Data available at Git repo.

vvyVvyvyy

3From Transportation Networks for Research
Contextual Traffic Routing

).

25

Example II: Contextual Traffic Routing

» Fg is 2-3 layer fully connected N-FPN (~ 100K trainable params.)
» N-FPN trained using JFB.
> Given z§ = N(d) quantify accuracy as

TRAF|X($;,$*) A #{6 €ELb: |$§[6] — x;[@]‘ < €|.T:l[€]|}

B
dataset edges/nodes OD-pairs TRAFIX score
Sioux Falls 76/24 528 0.94
Eastern Mass. 258/74 1113 0.97
Berlin-Friedrichshain 523/224 506 0.97
Berlin-Tiergarten 766/361 644 0.95
Anaheim 914/416 1406 0.95

Table: Results of using N-FPN to predict traffic flows. For TRAFIX score,
e=5x10"2

Contextual Traffic Routing

26

Thank you!

Papers:

» Wu Fung, Heaton, Li, McKenzie, Osher & Yin: Fixed Point
Networks: Implicit Depth Models with Jacobian-Free Backprop.

» Heaton, McKenzie, Li, Wu Fung, Osher & Yin: Learn to Predict
Equilibria via Fixed Point Networks.

Code:
» https://github.com/howardheaton/nash_fixed_point_networks

» https://github.com/howardheaton/fixed_point_networks

Contextual Traffic Routing 27

https://github.com/howardheaton/nash_fixed_point_networks
https://github.com/howardheaton/fixed_point_networks

	Contextual Games
	Naive N-FPN
	Scaling to large games
	Contextual Traffic Routing

