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Clusters in Graphs

= All graphs G = (V, E) are finite and V := [n] = {1,..., n}.
= A denotes (possibly weighted) adjacency matrix of G.
= For any data set X = {x1,...,x,} C R can make graph:

A = exp (—|Ixi — xj[[*/0?)

= A cluster C C V has “many” internal edges and “few" external edges.

Figure: From left to right: College Football (2000 season) Girvan and Newman [2002],
Senate Co-voting data for 97th congress Lewis et al. [2020], OptDigits made into a
graph.



Quantifying Good Clusters

A cluster C C V has “many” internal edges and “few” external edges.

Volume: vol(C) := ). d; where d; = degree of j = ZJ. Aj
Cut: Cut(C) = Y Ay

iec,jeC
Normalized Cut: NCut(C) = —<u%(C)
vol(C)vol(C)
Cut(C)

Conductance: Cond(C) = =
min(vol(C), vol(C))

Finding C* = rcnir‘}Cut(C) possible but non-informative.
C

Finding C* = min NCut(C) or min Cond(C) informative but NP-Hard
ccv ccv



Finding Good Clusters—Local and Global

Global clustering (e.g. Spectral Clustering ).

« Operates on full adj. matrix, run time ~ O(n?).
= Typically unsupervised.

Strongly local clustering (e.g. Nibble, CRD, LocalImprove 2).
« Semi-supervised: Given I' C V returns C* containing T
« Only operates on neighbourhood of C#, run time ~ O(vol(C#)).
= Weakly local clustering (e.g. PPR, HK-flow, CP+RWT ).
= Semi-supervised: Given ' C V returns C* containing .
« Operate on whole graph, run time ~ O(n).
= Cut improvement (e.g. FlowImprove, LocalFlow, ClusterPursuit) *

= Given Q ~ C returns C* better approx to C.

« Can be local, run time = O(Vol()%), or global, run time = O(n).

1Shi and Malik [2000], Ng et al. [2002]

2Spielman and Teng [2004, 2013], Wang et al. [2017],Veldt et al. [2016]

3 Andersen et al. [2007],Kloster and Gleich [2014],Lai and Mckenzie [2019]

4 Andersen and Lang [2008], Orecchia and Allen-Zhu [2014], Lai and Mckenzie [2019]



Overview of this talk

We rephrase cut improvement as a compressive sensing problem.

We introduce a new algorithm for cut improvement: ClusterPursuit.
This algorithm enjoys theoretical guarantees on accuracy and run time.
Numerical results are good.

We use ClusterPursuit to design local & global clustering algorithms.

Code available at: http://danielmckenzie.github.io/.


http://danielmckenzie.github.io/

In cluster and between cluster graphs

= Graph Laplacian: L =/ — DA

= Suppose G has clusters G, ..., C.

= Key Idea: Split G = G"[] G™.

» Here E" = {{i,j}: i,j € Csfora=1,...,k} and G" := (V,E™).
» E%' = E\ EMand G = (V, E®).

» Let A" (resp. L") denote adj. matrix (resp. Laplacian) of G™.

* Then A= A"+ A and L= L" + M.

= Theorem® ["1c, =0fora=1,...,k.

= Observation: ||1c,]jo:=|{i: (1¢,)i #0} = |G| :== na

5See, for example, Von Luxburg [2007]
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(Totally Perturbed) Compressive Sensing

= Compressive Sensing gives theory and algorithms for solving problem:
x* = argmin{[[ox — y[2 = [ixllo < s} (1)
= Restricted Isometry Constant, ds(®): smallest § € (0, 1) s.t.

(1- (5)Hx\|§ < ||¢x|\§ <(1+ 5)HXH§ for all x € R” with ||x|lo < s

= Fast, greedy algorithms for (1): OMP, CoSaMP, SubspacePursuit °.

= Robust to (additive and multiplicative) noise ’:

If x* = argmin {HQAJX —¥ll2: lIxllo < 5}
and x* = argmin {||®x — y|l2: |Ix[jo < s}
Withy:y+eand¢:é>+l\/l
Ix* — x*|l2

x|l

[M]l2
[[®1l2

lell2

then
llyll2

< C(85(P), €3, €y) where € =

and €, =

5 Tropp [2004], Needell and Tropp [2009], Dai and Milenkovic [2009]
"Herman and Strohmer [2010], Li [2016]
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Cut improvement with compressive sensing

= Recall:
« L=L"+ M. (Think®=1L" and & = L)
» M1, =0.

= Assume Q = G, given. Let U= C,\ Q and W =Q\ C,. Then:

lo=1c+1lw—1y = LMlg=L"1¢, +L" (1w —1yp)
— ["1lg=0+L" (1w —1y)
= y"=L"(Aw-1y) (ify":=L"1q)
= y~L(Aw-1y) (ify:=L1g)

= Define x* = argmin {||L"‘x —y"l2: lIxllo < W]+ |U|}
= Will show that x* =1y — 1y.

* Define x* = argmin {||Lx — y|2 : ||Ix]lo < |W|+ |U]|}.

= Will show that x# = x*.



Cut improvement with compressive sensing

Algorithm 1: ClusterPursuit

Input: Adj. matrix A, initial cut Q, estimate s ~ |C, A Q| and R € [0,1).

Output: Subset C¥ that approximates C,

L—I1—DAand y « Llg.

x* < argmin{||Lx — y||2 = ||x|lo} using m = O(log(n)) iterations of
SubspacePursuit.

U* < {i: x* < =R} and W# « {i: x* >R}

Cl + (Q\w#)uu*.

s |GAQ=G\Q+ 2\ G = W[+ U]
= Robust w.r.t parameters.

= Run time = O(dmaxnlog n).



Cut improvement with compressive sensing.

Recall:
» Q= C,.
- yin — Lin ].Q

Theorem (Lai & M.)

1w — 1y is the unique solution to:

arg min {||Li"x = yi”||2 sxlle < s}

for any G with clusters Gy, ..., Cx, as long as |C; A Q| < s < ni/2.

= Not a practical result! Don't know L™.

= Getting from L™ to L requires a data model.



The Data Model

= Let {Gn}2; where G, is prob. dist. on graphs on n vertices.

= Suppose exists €; = 0n(1) for i = 1,2, 3 such that for G ~ G,:

Al) V= G U...U Cc where C, are disjoint clusters and k = O,(1).

A3) letting ri := d?*/d", r; < e, for all i € [n] almost surely.
A4) If di := E[d]"] then din,, < (1 + e3)dim and din, > (1 — €3)din a.s.

— o~ o~ o~

A2) For all a € [k] Ma(Lge,) > 1 —e1 and An,(Lgc,) < 1+ €1 almost surely.

11/33



From L'" to L

Recall:

» M:=L—-[Mand e:=y—y".
lell2 . _ M
in L= (s)
™"l [l Lin]|$
= Key parameters for perturbed compressive sensing are €y, €] and ds(L)

y =

Theorem (Lai & M.)

Suppose that G, satisfies (A1)-(A4) and that |G A Q| < 0.13n1. Then for any
v € (0,1) the following hold almost surely:

1. ¢y = o(1) and /™ = o(1).
2. Sm(L) <+ of1).

(Think s = yn1.)
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Recovery Guarantee for ClusterPursuit

Theorem (Lai & M.)
Suppose the following:
= G, satisfies (A1)-(A4) and G ~ G,.
= |G AQ|=enm withe<0.13.
= 5<0.13nm and R =0.5.
Gact _

If C1# = ClusterPursuit(A,Q,s, R) then el
1

o(1) a.s.



Recovery Guarantee for ClusterPursuit

Theorem (Lai & M.)
Suppose the following:
= G, satisfies (A1)-(A4) and G ~ G,.
= |G AQ|=enm withe<0.13.
= 5<0.13nm and R =0.5.
Gact _

If C1# = ClusterPursuit(A,Q,s, R) then el
1

o(1) a.s.
Proof.
= Know x* = argmin {HLi"x —y"2: IIxlo < s} =1w —1y.
= Data Model = ¢y, €] and 05(L) are small.
o If x* = argmin {||Lx — y|l2: [|x]lo < s} then ||x* — x*|> small.
s {i:x¥ >0}~ Wand {i: x* <0}~ U



The stochastic block model

Specify cluster sizes n1 < np, < ... < ng.

Specify connection probability matrix P € RF<%,

Construct partition V = G U...U Cx with |G| = n,.
Generate G ~ SBM(n, P) with P[A; = 1|i € C;,j € Cp] = Pas.

Figure: Examples of adjacency matrices for different SBM(n, P).



Spectral Properties for L for SBM

Theorem (Lai & M.)
« Let G, = SBM(n, P) with [n| = % n, =n.
= Assume:
= N — 00,
= P.. =wlog(n)/n, for any w with w — co.
= P., = (84 0(1))log(n)/n for all a # b
= Then: G, satisfies assumptions (Al)—(A4).



Spectral Properties for L for SBM

Theorem (Lai & M.)
« Let G, = SBM(n, P) with [n| = % n, =n.
= Assume:
= N — 00,
= P.. =wlog(n)/n, for any w with w — co.
= P., = (84 0(1))log(n)/n for all a # b
= Then: G, satisfies assumptions (Al)—(A4).

Proof.
= If G ~ SBM(n, P) then each G¢, ~ ER(na, Paa).
= Concentration of measure for di(Gg,). ?

= Concentration of measure for \;(Gc,). °

?Frieze and Karoniski [2016]
bChung and Radcliffe [2011]



Experimental Results: Stochastic block model

-
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» Jac(Gi, CF) = |Gin CF|/| G U CfF|. High is good.
= FlowImprove® and SimpleLocal® take essentially the same approach.
= SimpleLocal optimized for small clusters (i.e. |C,| = On(1)).

= Yellow line is baseline (represents Jac(Q, C1)).

8 Andersen and Lang [2008]

9Veldt et al. [2016]
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Experimental Results: Stochastic block model
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Extension to local clustering

= ClusterPursuit works well given Q ~ C,.

= How to find Q7

05 pielman and Teng [2004],Andersen et al. [2007], Kloster and Gleich [2014],Wang et al. [2017]
M et al. [2015], He et al. [2015], Veldt et al. [2019]
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Extension to local clustering

= ClusterPursuit works well given Q ~ C,.
= How to find Q7
= Diffusion-based local clustering.

= Given small set of seed vertices I'.
« Let vO =M 711y
« Run a diffusive process for t steps: v{) = Pty(®,
= Q< {i: v,.(t) “is large”}.
= Diffusive process? random walk, Pagerank, heat flow, CRD 10

= Two-step local clustering'®: find Q & C, then refine to get CZ'.

05pielman and Teng [2004],Andersen et al. [2007], Kloster and Gleich [2014],Wang et al. [2017]
M et al. [2015], He et al. [2015], Veldt et al. [2019]
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Random Walk Thresholding

Algorithm 2: RWThresh

Input: Adj. matrix A, thresh. param. € € (0,1), seeds I C C,,/1, =~ n, and t.
Output: Q ~ G,

P+ AD7*and v « D1r.

v ptyO),

Q«{i: vi(t) amongst (1 + €)riy entries}

Q<+ QuUT.




Random Walk Thresholding

Theorem (Lai & M.)
Suppose the following:
= G, satisfies Assumptions (Al1)—(A4) and G ~ G,.
= t=0(1), i =m and e € (0,1).
2t—1

= [ C C with || =ges'"m for any g € (0,1) and €3 as in (A4)).
If Q = RWThresh(A, €, T, f1, t) then |Q A G| < (e + o(1))n almost surely.

= For SBM e3 = 1/ log(n) so || = ny/polylog(ny).

= In practice, take |I'| = 0.01n; or similar.

= Otbher diffusive algorithms'? take || = O(1), but return |Q| = O(1).
= Run time = O(nlog(n)).

125pielman and Teng [2004], Andersen et al. [2007], Kloster and Gleich [2014], Wang et al. [2017]
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Cluster pursuit for local clustering

Algorithm 3: CP+RWT

Input: Adj. matrix A, seed vertices [ C Ci, parameters ¢, R, i1, t
Output: C/ ~ G

Q < RWThresh(A, ¢, T, iy, t)

G} < ClusterPursuit(A,s = 2¢fn, R)

Theorem (Lai & M.)

Suppose the following:
= G, satisfies Assumptions (Al1)—(A4) and G ~ G,.
= t=0,(1), m=m, R=0.5 and e € (0,1).
» T C G with |[[| = g3 *m for any g € (0,1) and e3 as in (A4).
Then if C' = CP+RWT(A, T, ¢, R, i, t):
#
‘Qéq a0

almost surely, for large enough n;.



Experimental Results: Stochastic block model
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Experimental Results: Stochastic block model

logarithm of run time
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Experimental Results: Social Networks

= Facebook100'® dataset: Facebook networks at American universities.
= Metadata used to define ground-truth clusters.
= Considered four clusters **: two good, two moderately good.

= Always take || = 0.02n;.

School Cluster Size of graph  Size of Cluster Conductance
Johns Hopkins  Class of 2009 5180 910 0.21
Rice Dorm. 203 4087 406 0.47
Simmons Class of 2009 1518 289 0.11
Colgate Class of 2006 3482 557 0.49

Table: Basic properties of four clusters. Lower conductance is better.

B3 Traud et al. [2012]
MWang et al. [2017]



Experimental Results: Social Networks
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Figure: Clockwise from top left: Johns Hopkins, Rice, Colgate and Simmons.



Iterated CP+RWT for global clustering

Algorithm 4: ICP+RWT

Input: Adj. matrix A, labeled data I'; C G, for a=1,..., k. Parameters.
Output: Cl# ~ C,..., Cf ~ C

1 GW + G and AW + A,

2 fora=1,...kdo

3 L CY « cP+RUT(A® T, e, R, A, t)

4 G G\ ¢ and ATV is adj. matrix of GG*Y.

% Labeled Data 0.5 1 1.5 2 2.5
MNIST 96.41% 97.32% 97.44% 97.52% 97.50%
OptDigits 91.88% 95.47% 97.16% 98.06%  98.08%

Table: Classification accuracy, as a function of amount of labeled data, for ICP+RWT on
two well-studied benchmark data sets. Results essentially state-of-the-art.10

15Rasmus et al. [2015], Jacobs et al. [2018], Yin and Tai [2018]
5 Rasmus et al. [2015], Jacobs et al. [2018], Yin and Tai [2018]
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Conclusion

= ClusterPursuit is a provably robust, provably efficient cut improvement
algorithm.

= Can use ClusterPursuit as an algorithmic primitive to design clustering
algorithms.

= Theoretical guarantees follow from novel connection between cut

improvement and compressed sensing.
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Conclusion

ClusterPursuit is a provably robust, provably efficient cut improvement
algorithm.

Can use ClusterPursuit as an algorithmic primitive to design clustering
algorithms.

Theoretical guarantees follow from novel connection between cut

improvement and compressed sensing.
Thanks!

mckenzie@math.ucla.edu.
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