Math 118: Mathematical Methods of Data Theory

Lecture 9: Graphs and Spectral Clustering

Instructor: Daniel Mckenzie

Dept. of Mathematics, UCLA
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Graphs

= Graphs G = (V, E) where V = vertex set and E = edge set.

= For this class V = {v1,..., vn} and write (i, ) for edge between v; and v;.

= Adjacency matrix: A € R"*" with A; = 1if (i,/) is edge, and Aj; = 0 otherwise.

Insert Adjacency matrix and small graph here



Graphs

d; = degree of v; = number of edges incident to v;.
D = diag(d, ..., dn) € R"™",

The graph Laplacian: L = D — A.

Important properties of L:

= L is symmetric and pos. semi-definite.
- [1=0.

Further variants: G can have weighted or directed edges.



Examples of Graphs

o

Figure: Left to right: Zachary's Karate club®, College Football 2000 season *, Erdos-Renyi random
graph generated using networkx

Graphs often called networks in applied settings.

1()riginally: An information flow model for conflict and fission in small groups Zachary, W. 1977. Image from
https://studentwork.prattsi.org/infovis/labs/zacharys-karate-club/

2Originally: Community structure in social and biological networks. Girvan & N (2002). Image from Compressive sensing for
cut imp and local cli ing Lai & Mckenzie (2020)

30riginally: An information flow model for conflict and fission in small groups Zachary, W. 1977. Image from

https://studentwork.prattsi.org/infovis/labs/zacharys-karate-club/
4Originally: Community structure in social and biological networks. Girvan & N (2002). Image from Compressive sensing for

cut improvement and local clustering Lai & Mckenzie (2020)



https://studentwork.prattsi.org/infovis/labs/zacharys-karate-club/
https://studentwork.prattsi.org/infovis/labs/zacharys-karate-club/

Connected Components and Clusters

= ( is a connected component of G if no edges between C; and V' \ Ci.
= Corollary: If C; is a connected component thensois G = V' \ C.

Figure: Left: Two connected components. Right: One connected component but two clusters

= (i is a cluster of G if “few” edges between C; and V' \ C; and many internal
edges in C.
= Ratio Cut.
= Let e(S,V \ S) = # edges from S to V' \ S.
e(S,V\S)
= RCut(S) = —————=.
ISI[V\ S|

= Find cluster as C = arg min RCut(S).
scv



Why is finding clusters hard?

Finding connected components: Breadth-First Search or Depth-First Search.
Min Cut:

* Recall ¢(S, V' \ S) = # edges from S to V'\ S.

» Min Cut problem: Find C = argmine(S,V'\ S).
Scv
= Can be done efficiently (O(n®)) using Ford-Fulkerson algorithm.

= Problem: typically finds small C.

Recall RCut(S) = M.
ISIIVA S|
Unfortunately C = argmin RCut(S) is NP-hard.
scv

Thus, resort to approximate algorithms, like Spectral Clustering.
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The Spectral Clustering Algorithm

= Spectral clustering for 2 clusters:

1.

Compute d; for i = 1,...,n. Let D = diag(di,...,dn) € R™X".

2. Compute Laplacian: L =D — A.
3.
4. Assign vertices to clusters as:

Compute second eigenpair (A2, v2).

vi€ Cif (v2);j>0o0rvie V\Cif(v2) <0

. Output: C.



Output of Spectral Clustering

Figure: Left: Two connected components. Right: One connected component but two clusters
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Analysis of Spectral Clustering

e(S,V\ S)

= Recall solving C = arg min {RCut(S) = 7} is NP-hard.

= Instead, will show that Spectral Clustering solves a relaxed version of Ratio Cut.

scv ~ISlIVAS]

= Proceed via steps:

1.
; . 1

2. Relate to Ratio Cut: Reut(S) = 51 Lls.

3.

4. Argue that solving relaxed problem is easy: vo = argminv ' Lv.

5.

Introduce indicator vectors 15 € R” for S C V.

Relax: Replace 15 € R" with arbitrary v € R".

vERN
Can (approximately) reconstruct C from vy.

Ensure consistency with notation and type of indicator vectors, add a small (4-6

vertex) running example. Check consistency between S and C.
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Analysis of Spectral Clustering

Sc .
||S|‘ ifv,e$S

= For any S C V define: Is =
—1/% ifV,'§é5

= Properties of indicator vectors:
1. Reut(S) = H%ISTLIS (Homework).
2. So: C = argmingRCut(S) < Ic = argmin 1 Lls.
scv

3. 1715 = 0. Proof:

ms_Z(ls),-—Z( '55> +2 (‘

iev viES v;eS®

—|5|( 'fS) —|SC< '55'|>
= V/IslIse = /Islis<| = 0

4. 1f S# 0,V then ||Is||2 = /n (Homework).

= Relax problem arg min I;I—LIS to arg min vilv
scv veERN
[[v|l2=+/n and 1T v=0

S|
5]

)



Analysis of Spectral Clustering

Need a detour on eigenvalues and Rayleigh-Ritz. Caution that now enumerating
eigenvalues in increasing order.

+ Claim: v, = argmin,cpav' Lv: 1Tv =0 and ||lv|2 = v/n. Why?

= First eigenvector: 1 = v; = argmin vLv.

veRrn
[lvllo=v/n
= Second eigenvector: vy = arg min vilv
veRn
[[v|l2=+/n and 1T v=0
= So:
lc = argmin IST Lis ~ arg min vilv=w,
scv veRn

[[v|l2=+/n and 1T v=0
= (Ic)i>0ifvie Cand (I¢);i <0ifvi & C .

= Use same rule with v;:

V,'ECif(Vg),‘>00rV,'EV\Cif(V2)1<0
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