Math 118: Mathematical Methods of Data Theory
 Lecture 9: Graphs and Spectral Clustering

Instructor: Daniel Mckenzie

Dept. of Mathematics, UCLA

TBD

Graphs

- Graphs $G=(V, E)$ where $V=$ vertex set and $E=$ edge set.
- For this class $V=\left\{v_{1}, \ldots, v_{n}\right\}$ and write (i, j) for edge between v_{i} and v_{j}.
- Adjacency matrix: $A \in \mathbb{R}^{n \times n}$ with $A_{i j}=1$ if (i, j) is edge, and $A_{i j}=0$ otherwise.

Insert Adjacency matrix and small graph here

Graphs

- $d_{i}=$ degree of $v_{i}=$ number of edges incident to v_{i}.
- $D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right) \in \mathbb{R}^{n \times n}$.
- The graph Laplacian: $L=D-A$.
- Important properties of L :
- L is symmetric and pos. semi-definite.
- $L \mathbf{1}=\mathbf{0}$.
- Further variants: G can have weighted or directed edges.

Examples of Graphs

Figure: Left to right: Zachary's Karate club ${ }^{3}$, College Football 2000 season ${ }^{4}$, Erdos-Renyi random graph generated using networkx

Graphs often called networks in applied settings.

[^0]
Connected Components and Clusters

- C_{1} is a connected component of G if no edges between C_{1} and $V \backslash C_{1}$.
- Corollary: If C_{1} is a connected component then so is $C_{2}=V \backslash C_{1}$.

Figure: Left: Two connected components. Right: One connected component but two clusters

- C_{1} is a cluster of G if "few" edges between C_{1} and $V \backslash C_{1}$ and many internal edges in C_{1}.
- Ratio Cut.
- Let $e(S, V \backslash S)=$ \# edges from S to $V \backslash S$.
- $\operatorname{RCut}(S)=\frac{e(S, V \backslash S)}{|S||V \backslash S|}$.
- Find cluster as $C=\arg \min \operatorname{RCut}(S)$.

$$
S \subset V
$$

Why is finding clusters hard?

- Finding connected components: Breadth-First Search or Depth-First Search.
- Min Cut:
- Recall $e(S, V \backslash S)=$ \# edges from S to $V \backslash S$.
- Min Cut problem: Find $C=\arg \min e(S, V \backslash S)$.
$S \subset V$
- Can be done efficiently $\left(O\left(n^{3}\right)\right)$ using Ford-Fulkerson algorithm.
- Problem: typically finds small C.
- Recall $\operatorname{RCut}(S)=\frac{e(S, V \backslash S)}{|S||V \backslash S|}$.
- Unfortunately $C=\arg \min \operatorname{RCut}(S)$ is NP-hard.
- Thus, resort to approximate algorithms, like Spectral Clustering.

The Spectral Clustering Algorithm

- Spectral clustering for 2 clusters:

1. Compute d_{i} for $i=1, \ldots, n$. Let $D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right) \in \mathbb{R}^{n \times n}$.
2. Compute Laplacian: $L=D-A$.
3. Compute second eigenpair $\left(\lambda_{2}, \boldsymbol{v}_{2}\right)$.
4. Assign vertices to clusters as:

$$
v_{i} \in C \text { if }\left(\mathbf{v}_{2}\right)_{i}>0 \text { or } v_{i} \in V \backslash C \text { if }\left(\mathbf{v}_{2}\right)_{i}<0
$$

5. Output: C.

Output of Spectral Clustering

Figure: Left: Two connected components. Right: One connected component but two clusters

Analysis of Spectral Clustering

- Recall solving $C=\underset{S \subset V}{\arg \min }\left\{\operatorname{RCut}(S)=\frac{e(S, V \backslash S)}{|S||V \backslash S|}\right\}$. is NP-hard.
- Instead, will show that Spectral Clustering solves a relaxed version of Ratio Cut.
- Proceed via steps:

1. Introduce indicator vectors $\mathbf{1}_{S} \in \mathbb{R}^{n}$ for $S \subset V$.
2. Relate to Ratio Cut: $\operatorname{Rcut}(S)=\frac{1}{n^{2}} I_{S}^{\top} L_{S}$.
3. Relax: Replace $\mathbf{1}_{S} \in \mathbb{R}^{n}$ with arbitrary $\boldsymbol{v} \in \mathbb{R}^{n}$.
4. Argue that solving relaxed problem is easy: $\boldsymbol{v}_{2}=\arg \min \boldsymbol{v}^{\top} L \boldsymbol{v}$.
5. Can (approximately) reconstruct C from \boldsymbol{v}_{2}.

Ensure consistency with notation and type of indicator vectors, add a small (4-6 vertex) running example. Check consistency between S and C.

Analysis of Spectral Clustering

- For any $S \subset V$ define: $\mathbf{I}_{s}=\left\{\begin{array}{cl}\sqrt{\frac{\left|S^{c}\right|}{|S|}} & \text { if } v_{i} \in S \\ -\sqrt{\frac{|S|}{\left|S^{c}\right|}} & \text { if } v_{i} \notin S\end{array}\right.$
- Properties of indicator vectors:

1. $\operatorname{Rcut}(S)=\frac{1}{n^{2}} I_{S}^{\top} L I_{S}$ (Homework).
2. So: $C=\operatorname{argmin}_{S \subset V} \operatorname{RCut}(S) \Leftrightarrow I_{C}=\underset{S \subset V}{\arg \min } I_{S}^{\top} L I_{S}$.
3. $\mathbf{1}^{\top} \mathbf{I}_{S}=0$. Proof:

$$
\begin{aligned}
\mathbf{1}^{\top} \mathbf{I}_{S} & =\sum_{i \in V}\left(\mathbf{I}_{S}\right)_{i}=\sum_{v_{i} \in S}\left(\sqrt{\frac{\left|S^{c}\right|}{|S|}}\right)+\sum_{v_{i} \in S^{c}}\left(-\sqrt{\frac{|S|}{\left|S^{c}\right|}}\right) \\
& =|S|\left(\sqrt{\frac{\left|S^{c}\right|}{|S|}}\right)-\left|S^{c}\right|\left(\sqrt{\frac{|S|}{\left|S^{c}\right|}}\right) \\
& =\sqrt{|S|\left|S^{c}\right|}-\sqrt{|S|\left|S^{c}\right|}=0
\end{aligned}
$$

4. If $S \neq \emptyset, V$ then $\left\|I_{S}\right\|_{2}=\sqrt{n}$ (Homework).

- Relax problem $\underset{S \subset V}{\arg \min } \mathbf{I}_{S}^{\top} L_{S}$ to $\underset{v \in \mathbb{R}^{n}}{\arg \min } \quad \mathbf{v}^{\top} L \mathbf{v}$

$$
\|\mathbf{v}\|_{2}=\sqrt{\mathbf{v}} \in \mathbb{R}^{n} \text { and } \mathbf{1}^{\top} \mathbf{v}=0
$$

Analysis of Spectral Clustering

Need a detour on eigenvalues and Rayleigh-Ritz. Caution that now enumerating eigenvalues in increasing order.

- Claim: $\boldsymbol{v}_{2}=\arg \min _{\mathbf{v} \in \mathbb{R}^{n}} \mathbf{v}^{\top} L \mathbf{v}: \mathbf{1}^{\top} \mathbf{v}=0$ and $\|\mathbf{v}\|_{2}=\sqrt{n}$. Why?
- First eigenvector: $\mathbf{1}=\boldsymbol{v}_{1}=\arg \min \boldsymbol{v}^{\top} \mathbf{L} \boldsymbol{v}$.

$$
\begin{gathered}
\mathbf{v \in \mathbb { R } ^ { n }} \\
\|v\|_{2}=\sqrt{n}
\end{gathered}
$$

- Second eigenvector: $\boldsymbol{v}_{2}=$

$$
\underset{\substack{\mathbf{v} \in \mathbb{R}^{n} \\\|\mathbf{v}\|_{2}=\sqrt{n} \text { and } \mathbf{1}^{\top} \mathbf{v}=0} \mathbf{v}^{\top} L \mathbf{v} .}{\arg \sin }
$$

- So:

$$
\mathbf{I}_{C}=\underset{S \subset V}{\arg \min } I_{S}^{\top} L I_{S} \approx \underset{\substack{\mathbf{v} \in \mathbb{R}^{n} \\\|\mathbf{v}\|_{2}=\sqrt{n} \text { and } \mathbf{1}^{\top} \mathbf{v}=0}}{\arg \min } \mathbf{v}^{\top} L \mathbf{v}=\mathbf{v}_{2}
$$

- $\left(\mathbf{I}_{C}\right)_{i}>0$ if $v_{i} \in C$ and $\left(\mathbf{I}_{C}\right)_{i}<0$ if $v_{i} \notin C$.
- Use same rule with \boldsymbol{v}_{2} :

$$
v_{i} \in C \text { if }\left(\mathbf{v}_{2}\right)_{i}>0 \text { or } v_{i} \in V \backslash C \text { if }\left(\mathbf{v}_{2}\right)_{i}<0
$$

[^0]: ${ }^{1}$ Originally: An information flow model for conflict and fission in small groups Zachary, W. 1977. Image from https://studentwork.prattsi.org/infovis/labs/zacharys-karate-club/
 ${ }^{2}$ Originally: Community structure in social and biological networks. Girvan \& Newman (2002). Image from Compressive sensing for cut improvement and local clustering Lai \& Mckenzie (2020)
 ${ }^{3}$ Originally: An information flow model for conflict and fission in small groups Zachary, W. 1977. Image from https://studentwork.prattsi.org/infovis/labs/zacharys-karate-club/
 ${ }^{4}$ Originally: Community structure in social and biological networks. Girvan \& Newman (2002). Image from Compressive sensing for cut improvement and local clustering Lai \& Mckenzie (2020)

