Math 118: Mathematical Methods of Data Theory

Lecture 9: Graphs and Spectral Clustering

Instructor: Daniel Mckenzie

Dept. of Mathematics, UCLA

TBD

Graphs

- Graphs G = (V, E) where V = vertex set and E = edge set.
- For this class $V = \{v_1, \dots, v_n\}$ and write (i, j) for edge between v_i and v_j .
- Adjacency matrix: $A \in \mathbb{R}^{n \times n}$ with $A_{ij} = 1$ if (i, j) is edge, and $A_{ij} = 0$ otherwise.

Insert Adjacency matrix and small graph here

Graphs

- $d_i = \text{degree of } v_i = \text{number of edges incident to } v_i$.
- $D = \operatorname{diag}(d_1, \ldots, d_n) \in \mathbb{R}^{n \times n}$.
- The graph Laplacian: L = D A.
- Important properties of *L*:
 - L is symmetric and pos. semi-definite.
 - L1 = 0.
- Further variants: G can have weighted or directed edges.

Examples of Graphs

Figure: Left to right: Zachary's Karate $club^3$, College Football 2000 season 4 , Erdos-Renyi random graph generated using networkx

Graphs often called *networks* in applied settings.

¹Originally: An information flow model for conflict and fission in small groups Zachary, W. 1977. Image from https://studentwork.prattsi.org/infovis/labs/zacharys-karate-club/

²Originally: Community structure in social and biological networks. Girvan & Newman (2002). Image from Compressive sensing for cut improvement and local clustering Lai & Mckenzie (2020)

 $^{^3} Originally: \ \textit{An information flow model for conflict and fission in small groups} \ Zachary, \ W.\ 1977. \ Image from \ https://studentwork.prattsi.org/infovis/labs/zacharys-karate-club/$

⁴Originally: Community structure in social and biological networks. Girvan & Newman (2002). Image from Compressive sensing for cut improvement and local clustering Lai & Mckenzie (2020)

Connected Components and Clusters

- C_1 is a **connected component** of G if no edges between C_1 and $V \setminus C_1$.
- Corollary: If C_1 is a connected component then so is $C_2 = V \setminus C_1$.

Figure: Left: Two connected components. Right: One connected component but two clusters

- C₁ is a cluster of G if "few" edges between C₁ and V \ C₁ and many internal edges in C₁.
- Ratio Cut.
 - Let $e(S, V \setminus S) = \#$ edges from S to $V \setminus S$.
 - $RCut(S) = \frac{e(S, V \setminus S)}{|S||V \setminus S|}$.
 - Find cluster as $C = \underset{S \subset V}{\operatorname{arg min}} \operatorname{RCut}(S)$.

Why is finding clusters hard?

- Finding connected components: Breadth-First Search or Depth-First Search.
- Min Cut:
 - Recall $e(S, V \setminus S) = \#$ edges from S to $V \setminus S$.
 - Min Cut problem: Find $C = \underset{S \subset V}{\arg\min} e(S, V \setminus S)$.
 - Can be done efficiently $(O(n^3))$ using Ford-Fulkerson algorithm.
 - **Problem:** typically finds small *C*.
- Recall RCut(S) = $\frac{e(S, V \setminus S)}{|S||V \setminus S|}$.
- Unfortunately $C = \underset{S \subset V}{\operatorname{arg\,min}\,\mathsf{RCut}}(S)$ is NP-hard.
- Thus, resort to approximate algorithms, like Spectral Clustering.

The Spectral Clustering Algorithm

- Spectral clustering for 2 clusters:
 - 1. Compute d_i for i = 1, ..., n. Let $D = \text{diag}(d_1, ..., d_n) \in \mathbb{R}^{n \times n}$.
 - 2. Compute Laplacian: L = D A.
 - 3. Compute **second** eigenpair $(\lambda_2, \mathbf{v}_2)$.
 - 4. Assign vertices to clusters as:

$$v_i \in C$$
 if $(\mathbf{v}_2)_i > 0$ or $v_i \in V \setminus C$ if $(\mathbf{v}_2)_i < 0$

5. **Output:** *C*.

Output of Spectral Clustering

Figure: Left: Two connected components. Right: One connected component but two clusters

Analysis of Spectral Clustering

- $\qquad \text{Recall solving } C = \mathop{\arg\min}_{S \subset V} \left\{ \mathsf{RCut}(S) = \frac{e(S, V \setminus S)}{|S||V \setminus S|} \right\}. \text{ is NP-hard}.$
- Instead, will show that Spectral Clustering solves a relaxed version of Ratio Cut.
- Proceed via steps:
 - 1. Introduce indicator vectors $\mathbf{1}_S \in \mathbb{R}^n$ for $S \subset V$.
 - 2. Relate to Ratio Cut: Rcut(S) = $\frac{1}{n^2} \mathbf{I}_S^{\top} L \mathbf{I}_S$.
 - 3. **Relax:** Replace $\mathbf{1}_S \in \mathbb{R}^n$ with arbitrary $\mathbf{v} \in \mathbb{R}^n$.
 - 4. Argue that solving relaxed problem is easy: $\mathbf{v}_2 = \arg\min_{\mathbf{v} \in \mathbb{P}^n} \mathbf{v}^\top L \mathbf{v}$.
 - 5. Can (approximately) reconstruct C from \mathbf{v}_2 .

Ensure consistency with notation and type of indicator vectors, add a small (4–6 vertex) running example. Check consistency between S and C.

Analysis of Spectral Clustering

• For any
$$S \subset V$$
 define: $\mathbf{I}_{s} = \begin{cases} \sqrt{\frac{|S^{c}|}{|S|}} & \text{if } v_{i} \in S \\ -\sqrt{\frac{|S|}{|S^{c}|}} & \text{if } v_{i} \notin S \end{cases}$

- Properties of indicator vectors:
 - 1. $Rcut(S) = \frac{1}{n^2} \mathbf{I}_S^\top L \mathbf{I}_S$ (Homework).
 - 2. So: $C = \underset{S \subset V}{\operatorname{argmin}}_{S \subset V} \operatorname{RCut}(S) \Leftrightarrow I_C = \underset{S \subset V}{\operatorname{argmin}} \operatorname{I}_S^{\top} \operatorname{LI}_S.$
 - 3. $\mathbf{1}^{\top} \mathbf{I}_{S} = 0$. Proof:

$$\mathbf{1}^{\top} \mathbf{I}_{S} = \sum_{i \in V} (\mathbf{I}_{S})_{i} = \sum_{v_{i} \in S} \left(\sqrt{\frac{|S^{c}|}{|S|}} \right) + \sum_{v_{i} \in S^{c}} \left(-\sqrt{\frac{|S|}{|S^{c}|}} \right)$$
$$= |S| \left(\sqrt{\frac{|S^{c}|}{|S|}} \right) - |S^{c}| \left(\sqrt{\frac{|S|}{|S^{c}|}} \right)$$
$$= \sqrt{|S||S^{c}|} - \sqrt{|S||S^{c}|} = 0$$

- 4. If $S \neq \emptyset$, V then $||\mathbf{I}_S||_2 = \sqrt{n}$ (Homework).
- Relax problem $\underset{S \subset V}{\arg\min} \ \mathbf{I}_S^\top L \mathbf{I}_S \text{ to} \underset{\mathbf{v} \in \mathbb{R}^n}{\arg\min} \quad \mathbf{v}^\top L \mathbf{v}$ $\|\mathbf{v}\|_{2} = \sqrt{n} \text{ and } \mathbf{1}^\top \mathbf{v} = \mathbf{0}$

Analysis of Spectral Clustering

Need a detour on eigenvalues and Rayleigh-Ritz. Caution that now enumerating eigenvalues in *increasing* order.

- Claim: $\mathbf{v}_2 = \arg\min_{\mathbf{v} \in \mathbb{R}^n} \mathbf{v}^\top L \mathbf{v} : \mathbf{1}^\top \mathbf{v} = 0 \text{ and } \|\mathbf{v}\|_2 = \sqrt{n}.$ Why?
- First eigenvector: $\mathbf{1} = \mathbf{v}_1 = \arg\min \mathbf{v}^\top L \mathbf{v}$.

$$\|\mathbf{v}\|_2 = \sqrt{n}$$

- Second eigenvector: $\mathbf{v}_2 = \underset{\mathbf{v} \in \mathbb{R}^n}{\arg\min} \mathbf{v}^\top L \mathbf{v}$ $\|\mathbf{v}\|_2 = \sqrt{n} \text{ and } \mathbf{1}^\top \mathbf{v} = 0$
- So:

$$\mathbf{I}_C = \operatorname*{arg\,min}_{S \subset V} \mathbf{I}_S^\top L \mathbf{I}_S \approx \operatorname*{arg\,min}_{\substack{\mathbf{v} \in \mathbb{R}^n \\ \|\mathbf{v}\|_2 = \sqrt{n} \text{ and } \mathbf{1}^\top \mathbf{v} = \mathbf{0}}} \mathbf{v}^\top L \mathbf{v} = \mathbf{v}_2$$

- $(\mathbf{I}_C)_i > 0$ if $v_i \in C$ and $(\mathbf{I}_C)_i < 0$ if $v_i \notin C$.
- Use same rule with v₂:

$$v_i \in C$$
 if $(\mathbf{v}_2)_i > 0$ or $v_i \in V \setminus C$ if $(\mathbf{v}_2)_i < 0$