
Math 118: Mathematical Methods of Data Theory
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Dept. of Mathematics, UCLA
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Graphs

• Graphs G = (V ,E) where V = vertex set and E = edge set.
• For this class V = {v1, . . . , vn} and write (i , j) for edge between vi and vj .
• Adjacency matrix: A ∈ Rn×n with Aij = 1 if (i , j) is edge, and Aij = 0 otherwise.

Insert Adjacency matrix and small graph here
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Graphs

• di = degree of vi = number of edges incident to vi .
• D = diag(d1, . . . , dn) ∈ Rn×n.
• The graph Laplacian: L = D − A.
• Important properties of L:

• L is symmetric and pos. semi-definite.
• L1 = 0.

• Further variants: G can have weighted or directed edges.
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Examples of Graphs

Figure: Left to right: Zachary’s Karate club3, College Football 2000 season 4, Erdos-Renyi random
graph generated using networkx

Graphs often called networks in applied settings.

1Originally: An information flow model for conflict and fission in small groups Zachary, W. 1977. Image from
https://studentwork.prattsi.org/infovis/labs/zacharys-karate-club/

2Originally: Community structure in social and biological networks. Girvan & Newman (2002). Image from Compressive sensing for
cut improvement and local clustering Lai & Mckenzie (2020)

3Originally: An information flow model for conflict and fission in small groups Zachary, W. 1977. Image from
https://studentwork.prattsi.org/infovis/labs/zacharys-karate-club/

4Originally: Community structure in social and biological networks. Girvan & Newman (2002). Image from Compressive sensing for
cut improvement and local clustering Lai & Mckenzie (2020)
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Connected Components and Clusters
• C1 is a connected component of G if no edges between C1 and V \ C1.
• Corollary: If C1 is a connected component then so is C2 = V \ C1.

Figure: Left: Two connected components. Right: One connected component but two clusters

• C1 is a cluster of G if “few” edges between C1 and V \ C1 and many internal
edges in C1.

• Ratio Cut.
• Let e(S,V \ S) = # edges from S to V \ S.
• RCut(S) = e(S,V \ S)

|S||V \ S|
.

• Find cluster as C = arg min
S⊂V

RCut(S).
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Why is finding clusters hard?

• Finding connected components: Breadth-First Search or Depth-First Search.
• Min Cut:

• Recall e(S,V \ S) = # edges from S to V \ S.
• Min Cut problem: Find C = arg min

S⊂V
e(S,V \ S).

• Can be done efficiently (O(n3)) using Ford-Fulkerson algorithm.
• Problem: typically finds small C .

• Recall RCut(S) = e(S,V \ S)
|S||V \ S|

.

• Unfortunately C = arg min
S⊂V

RCut(S) is NP-hard.

• Thus, resort to approximate algorithms, like Spectral Clustering.
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The Spectral Clustering Algorithm

• Spectral clustering for 2 clusters:
1. Compute di for i = 1, . . . , n. Let D = diag(d1, . . . , dn) ∈ Rn×n.
2. Compute Laplacian: L = D − A.
3. Compute second eigenpair (λ2, v2).
4. Assign vertices to clusters as:

vi ∈ C if (v2)i > 0 or vi ∈ V \ C if (v2)i < 0

5. Output: C .
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Output of Spectral Clustering

Figure: Left: Two connected components. Right: One connected component but two clusters
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Analysis of Spectral Clustering

• Recall solving C = arg min
S⊂V

{
RCut(S) = e(S,V \ S)

|S||V \ S|

}
. is NP-hard.

• Instead, will show that Spectral Clustering solves a relaxed version of Ratio Cut.
• Proceed via steps:

1. Introduce indicator vectors 1S ∈ Rn for S ⊂ V .
2. Relate to Ratio Cut: Rcut(S) = 1

n2 I>S LIS .
3. Relax: Replace 1S ∈ Rn with arbitrary v ∈ Rn.
4. Argue that solving relaxed problem is easy: v2 = arg min

v∈Rn
v>Lv .

5. Can (approximately) reconstruct C from v2.

Ensure consistency with notation and type of indicator vectors, add a small (4–6
vertex) running example. Check consistency between S and C .
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Analysis of Spectral Clustering

• For any S ⊂ V define: Is =


√
|Sc |
|S| if vi ∈ S

−
√
|S|
|Sc | if vi /∈ S

• Properties of indicator vectors:
1. Rcut(S) = 1

n2 I>S LIS (Homework).
2. So: C = argminS⊂V RCut(S)⇔ IC = arg min

S⊂V
I>S LIS .

3. 1>IS = 0. Proof:

1>IS =
∑
i∈V

(IS )i =
∑
vi∈S

(√
|Sc |
|S|

)
+
∑
vi∈Sc

(
−

√
|S|
|Sc |

)

= |S|
(√

|Sc |
|S|

)
− |Sc |

(√
|S|
|Sc |

)
=
√
|S||Sc | −

√
|S||Sc | = 0

4. If S 6= ∅,V then ‖IS‖2 = √n (Homework).
• Relax problem arg min

S⊂V
I>S LIS to arg min

v∈Rn
‖v‖2=

√
n and 1>v=0

v>Lv
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Analysis of Spectral Clustering

Need a detour on eigenvalues and Rayleigh-Ritz. Caution that now enumerating
eigenvalues in increasing order.

• Claim: v2 = arg minv∈Rn v>Lv : 1>v = 0 and ‖v‖2 = √n. Why?
• First eigenvector: 1 = v1 = arg min

v∈Rn
‖v‖2=

√
n

v>Lv .

• Second eigenvector: v2 = arg min
v∈Rn

‖v‖2=
√

n and 1>v=0

v>Lv

• So:
IC = arg min

S⊂V
I>S LIS ≈ arg min

v∈Rn
‖v‖2=

√
n and 1>v=0

v>Lv = v2

• (IC )i > 0 if vi ∈ C and (IC )i < 0 if vi 6∈ C .
• Use same rule with v2:

vi ∈ C if (v2)i > 0 or vi ∈ V \ C if (v2)i < 0
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