Dictionary Learning Using Wavelets

Daniel Mckenzie

University of Georgia

25 April 2016
Overview

This talk is about using wavelets for compression.

The plan:

- Review wavelets.
- Discuss Dictionary learning.
- Explain how one can combine dictionary learning and wavelets to achieve better compression.

I will only consider discrete, finite signals.
Consider the following signals:

- **Figure: Signal A**
- **Figure: Signal B**
- **Figure: Signal C**

Each is a discrete signal consisting of 1024 double precision floating point values, i.e. 65536 bits per signal.
Now consider their (discrete) Fourier Transforms:

![Figure: Signal A](image1)
![Figure: Signal B](image2)
![Figure: Signal C](image3)

Each signal has three non-zero entries, i.e. now 192 bits per signal.

The Point Using Prior knowledge of our signals, we switched basis for \mathbb{R}^{1024} from $\{e_n\}_{n=1}^{1024}$ to $\{\sin(2\pi n)\}_{n=1}^{1024}$. Signals are sparse in new basis and thus can easily be compressed.
Some remarks on Discrete Fourier Transform:

- Linear transformation $\mathbb{R}^N \rightarrow \mathbb{R}^N$, hence can be represented as a matrix: $\hat{f} = Ff$.
- Matrix multiplication takes $O(N^2)$ operations.
- The Fast Fourier Transform takes $O(N \log(N))$.
- ‘The Fast Fourier Transform is the most important numerical algorithm of our lifetime.’ Gilbert Strang. [Str94]
Problem with Fourier Transform

Unable to detect time localized frequency events.

Example (Linear Chirp)

Figure: signal with 4096 entries
Figure: Fourier Transform of signal

Figure: Graph of a Linear Chirp: $y = \sin(2\pi t^2)$ and its Fourier Transform
One Solution:

Instead of basis of sine waves, use a basis of function with compact support in time.

Example (Haar Wavelets ([JJWW00]))

Consider discrete signals of length 8, e.g. \(f = (4, 6, 10, 12, 8, 6, 5, 5) \), in basis \(\{e_i\}_{i=1}^8 \). Let

\[
\varphi = \frac{1}{\sqrt{2}} (1, 1, 0, \ldots, 0)
\]

\[
\psi = \frac{1}{\sqrt{2}} (1, -1, 0, \ldots, 0)
\]

and define translations:

\[
\varphi_k[i] = \varphi[i - 2k]
\]

\[
\psi_k[i] = \psi[i - 2k]
\]
Example (Haar Wavelets cont.)

Then \((\varphi_0, \ldots, \varphi_3|\psi_0, \ldots, \psi_3)\) is a basis. In this basis:

\[f = \sqrt{2}(5, 11, 7, 5| -1, -1, 1, 0) \]

Figure: \(f\) plotted in red and \(\sqrt{2}(5, 11, 7, 5|0, 0, 0, 0)\) plotted in blue

So \(a_1 = (5, 11, 7, 5)\) is a (very) good approximation to \(f\). Can think of \(a\) as low frequency approximation, \(d_1 = (-1, -1, 1, 0)\) as high frequency details.
Consider translations and dilations:

\[
\varphi_{j,k} = \frac{1}{\sqrt{2^{j+1}}} \varphi \left\lfloor \frac{n - k + 1}{2^j} \right\rfloor
\]

\[
\psi_{j,k} = \frac{1}{\sqrt{2^{j+1}}} \psi \left\lfloor \frac{n - k + 1}{2^j} \right\rfloor
\]

\[
\varphi_{1,0} = (1/2, 1/2, 1/2, 1/2, 0, 0, 0, 0)
\]

Claim \((\varphi_{2,1}, \varphi_{2,2} | \psi_{2,1} \psi_{2,2} | \psi_{1,1}, \ldots, \psi_{1,4})\) is a basis. In this basis:

\[
f = (16, 12 | -6, 2 | -\sqrt{2}, -\sqrt{2}, \sqrt{2}, 0)
\]

\[
a_2 = (16, 12) is still a good approximation to f. \psi is the Haar Wavelet and \varphi is its scaling function.
\]

\[
f \rightarrow (a_1|d_1) is a 1-level Haar Wavelet transform.
\]

\[
f \rightarrow (a_2|d_2|d_1) is a 2-level Haar Wavelet transform.
\]
We shall restrict attention to orthogonal, compactly supported wavelets which come from an MRA, specifically Daubechies wavelets. Some properties:

- Changing to wavelet basis is linear transformation $\mathbb{R}^N \rightarrow \mathbb{R}^N$, hence can be represented as a matrix: $\hat{f} = W_\psi f$.
- Has a ‘Fast Transform’ (Conjugate Mirror Filters).
- Preserves ℓ^2 norm.
- Is an invertible transformation.
A General Compression Scheme

1. Given 1-dim signal \mathbf{f}, take its wavelet transform:

 $\hat{\mathbf{f}} = W_\psi \mathbf{f} = (a_n|d_n| \ldots |d_1)$

2. Either set $d_\ell = 0$ for $\ell = 1, \ldots, k$ or threshold to get $\hat{\mathbf{f}}$, which should be sparse.

3. Encode and store $\hat{\mathbf{f}}$.

4. Reconstruct approximation to \mathbf{f} as needed via: $\tilde{\mathbf{f}} = W_\psi^T \hat{\mathbf{f}}$

The Point
Wavelets are good for (lossy) compression.
Given image I, represented as matrix of grayscale values, take an n-level wavelet transform to get:

$$\hat{I} = (a_n | h_n, v_n, d_n | \ldots | h_1, v_1, d_1)$$

Set $v_\ell = h_\ell = d_\ell = 0$ for $\ell = 1, \ldots, k$ or threshold to get \hat{I}.

Encode and store \hat{I}.
512 × 512 fingerprint image analysed with db4 wavelet using MATLAB’s Wavelet Toolbox.
Any Questions?
Recall that an (orthogonal) wavelet transform is like switching to a new basis.

Wavelet transforms suffer from the ‘Curse of Generality’.

Idea: Given a collection of ‘similar’ signals \(\{y_1, \ldots, y_N\} \subset \mathbb{R}^n \) (e.g. all fingerprint images of same size). Determine a basis \(\{d_1, \ldots, d_n\} \) of \(\mathbb{R}^n \) s.t. representations of the \(y_i \) in this basis are as sparse as possible.
Definition (Dictionary)

A collection \(\{\mathbf{d}_1, \ldots, \mathbf{d}_K\} \subset \mathbb{R}^n \) which spans \(\mathbb{R}^n \) is a Dictionary. \((K \geq n)\)

Frequently shall write dictionary as \(n \times K \) matrix \(\mathbf{D} \) whose columns are \(\mathbf{d}_i \). The \(\mathbf{d}_i \) are called ‘atoms’.

Definition (Dictionary Learning Problem)

Given \(\{\mathbf{y}_1, \ldots, \mathbf{y}_N\} \) with \(N \gg K \) find a dictionary \(\mathbf{D}^* \) s.t. \(\mathbf{x}_i^* \approx \mathbf{D}^* \mathbf{y}_i \) and the \(\mathbf{x}_i \) are sufficiently sparse. Mathematically:

\[
(\mathbf{D}^*, \mathbf{X}^*) = \arg\min_{\mathbf{D}, \mathbf{X}} \sum_{i=1}^{N} \| \mathbf{y}_i - \mathbf{D} \mathbf{x}_i \|_2^2 \text{ subject to } \| \mathbf{x} \|_0 \leq T
\]

\[
= \arg\min_{\mathbf{D}, \mathbf{X}} \| \mathbf{Y} - \mathbf{D} \mathbf{X} \|_F^2 \text{ subject to } \| \mathbf{x} \|_0 \leq T
\]

If \(\mathbf{Y} \) \(n \times N \) matrix with column \(\mathbf{y}_i \) and \(\mathbf{X} \) a \(K \times N \) matrix with columns \(\mathbf{x}_i \).
Suppose \(T = 1 \), and we require that \(\mathbf{x}_i \) are binary vectors.

Problem becomes:

\[
(D^*, X^*) = \arg\min_{D, X} \|Y - DX\|_F^2 \text{ subject to } \mathbf{x}_i = \mathbf{e}_j \in \mathbb{R}^K \quad (1)
\]
Efficient Algorithm for solution to (1):

Algorithm 1 k-means

Input \(Y \)
Initialize \(D^{(0)} \in \mathbb{R}^{n \times K} \)

for \(J = 1 : J_{\text{max}} \) do
 for \(k = 1 : K \) do
 \(C_k^{(J)} = \{\} \) (an empty list)

 for \(i = 1 : N \) do
 if \(\| y_i - d_{k^*}^{(J-1)} \|_2 = \min_k \| y_i - d_k^{(J-1)} \| \) then
 Add \(i \) to list \(C_k^{(J)} \)
 \(C_k^{(J)} \) \hspace{1cm} \(\triangleright \) The Sparse Coding Stage

 for \(k = 1 : K \) do
 \(d_k^{(J)} = \frac{1}{|C_k^{(J)}|} \sum_{i \in C_k^{(J)}} y_i \)
\hspace{1cm} \(\triangleright \) The Dictionary Update Stage

Output \(D^* = D^{(J_{\text{max}})} \) and \(x_i = e_k \) if \(i \in C_k^{J_{\text{max}}} \)
The general approach: The K-SVD algorithm [AEB06]

Consider again the general problem:

\[(D, X) = \arg\min_{D, X} \|Y - DX\|_F^2 \text{ subject to } \|x\|_0 \leq T \quad (2)\]

Generalize the previous algorithm to the K-SVD algorithm as follows:

- **Input:** sample signals \(Y = [y_1, \ldots, y_N]\), sparsity parameter \(T\), size of dictionary \(K\).
- Initialize dictionary \(D^{(0)} \in \mathbb{R}^{n \times K}\) with normalized columns.
- Until stopping criteria met, repeat:
 1. **Sparse coding step** Find \(x_i\) such that

 \[x_i = \arg\min_{x} \{\|y_i - Dx\|_2\} \text{ subject to: } \|x\|_0 \leq T \quad (3)\]

 Using MP, OMP etc.
 2. Let \(X \in \mathbb{R}^{K \times N}\) have columns \(x_i\).
(Dictionary Update) Update each atom d_k in turn:

- Let ω_k be the set of examples that use d_k: $\omega_k = \{j : (x_j)_k \neq 0\}$.
- For each $j \in \omega_k$ compute $e_{j,k} = y_j - \sum_{\ell, \ell \neq k} (x_j)_\ell d_\ell$, residual without d_k.
- We are going to update d_k and the coefficients $(x_\ell)_k$ (for $\ell \in \omega_k$) so as to minimize this residual error E_k.
- Let $E_k \in \mathbb{R}^{n,|\omega_k|}$ have columns $e_{j,k}$.
- Solve:

$$(d_k^*, \xi^*) = \arg\min_{\xi, \mathbf{d}} \|E_k - \mathbf{d} \xi\|_F^2 \text{ subject to: } \xi \in \mathbb{R}^{|\omega_k|} \text{ and } \|\mathbf{d}\|_2 = 1$$

(4)

- $d\xi \in \mathbb{R}^{n,|\omega_k|}$ is rank one. so (4) is solved by choosing $d\xi$ to be optimal rank one approximation to E_k.
- (by Eckart-Young-Mirsky theorem) if $U\Sigma V^T = E_k$ is SVD, then $d_k^* = u_1$ and $\xi^* = \sigma(1)v_1$ solves (4).
- Update d_k to d_k^* and $(x_{j_\ell})_k = \xi_\ell$ where $\omega_k = \{j_1, j_2, \ldots\}$.
Output: Learned dictionary \mathbf{D} and sparse representation matrix \mathbf{X} such that if \mathbf{X} has columns \mathbf{x}_i then $||\mathbf{x}_i||_0 \leq T$ and $\mathbf{D}\mathbf{x}_i \approx \mathbf{y}_i$
Some Remarks

- Updating only coefficients \((x_j)_k\) for \(j \in \omega_k\) ensures that sparsity of the \(x_i\) can only improve.
- If in sparse coding step (3) solution is always found, then representation error \(|Y - DX|^2_F\) is non-increasing, thus algorithm will converge.
- OMP works well enough for fairly small \(T\) to ‘practically’ ensure convergence.
In [AEB06] K-SVD is implemented for images of faces.

$N = 11\,000$ and the y_i for $i = 1, \ldots, K$ are 8×8 pixel blocks (i.e. $n = 64$), randomly sampled from a database of 4752×4752 facial images.

K-SVD run with $K = 441$

Figure: Learned dictionary on right, Haar dictionary on left (from [AEB06])

For further details see [AEB06]
Experimental Results

- I randomly sampled image from same database, split into 594 8×8 blocks B_i.
- Fix # bits per coefficient, Q.
- Fix an error goal ϵ.
- Encode each B_i to \tilde{B}_i using OMP such that if $e^2 = \frac{||B_i - \tilde{B}_i||^2}{64}$ then $e^2 < \epsilon$.
- Let $PSNR = 10 \log_{10}(\frac{1}{e^2})$ (higher PSNR = better quality).
- Let TNB denote the total number of bits required to encode \tilde{I}.

$$TNB = \#\text{blocks} \times a + \#\text{coeffs}(b + Q)$$

where a is # bits required to code # coefficients per block, b is # bits required to code index of each atom.

- BPP (Bits Per Pixel) is given by:

$$BPP = \frac{TNB}{\#\text{pixels}}$$
Figure: BPP vs. PSNR for learned dictionary, Haar wavelet transform and DCT. From [AEB06]
Figure: Reconstruction of compressed images. From [AEB06]
Learned dictionaries appear to offer better compression rates, at least at low PSNR. However:

1. Learning is computationally intensive.
2. Lack of fast transform
3. Not multiscale; loses out on some potential compression.

Question: Can we combine strengths of learned and wavelet dictionaries?
Any questions?
[OLE11] attempts to combine a wavelet transform with a learned dictionary.

Idea: First take wavelet transform, then apply a dictionary learning algorithm (K-SVD).

Formally, solve:

$$(\tilde{D}^*, X^*) = \arg\min_{\tilde{D}, X} \|Y - W_\psi \tilde{D}X\|_F^2 = \arg\min_{\tilde{D}, X} \|W_\psi Y - \tilde{D}X\|_F^2$$

where the columns of \tilde{D} are constrained to be very sparse.

Effective dictionary is now $D = W_\psi \tilde{D}$ whose atoms are linear combinations of several wavelet atoms, adapted to training set Y.

Implementation

- In [AEB06] a 3 layer db4 wavelet transform was taken on data base of 20 coastal scenery images.
- 3 levels gives 10 bands: \(a_3, d_3, v_3, h_3, \ldots, h_1 \). Will train a dictionary \(D_b \) for each band (10 in total).
- For each band, take \(K = 64 \) (# of atoms), and again each atom will be a \(8 \times 8 \) block.
- As before, train \(D_b \) using a training set \(Y = [y_1, \ldots, y_N] \) of \(8 \times 8 \) blocks randomly drawn from b-th band of images using K-SVD.
Given image \(I \), take 3 level wavelet transform \(\hat{I} \).

For each band \(b \), split \(\hat{I}_b \) into \(8 \times 8 \) blocks \(B_i \).

encode each block \(B_i \) to \(\tilde{B}_i \) using OMP such that in total only \(M \) atoms are used.

This is compared to Wavelet transform compression using thresholding to keep only the \(M \) largest coefficients, and to regular K-SVD using \(M \) coefficients.
Figure: Comparing PSNR to M for three methods. [OLE11]
Figure: reconstructions using 32 000 terms. Top left is original, top right is wavelet (db4) reconstruction, bottom left is regular K-SVD, bottom right is K-SVD + Wavelet. [OLE11]
Conclusions

To conclude:

- In order to compress one first needs to choose a dictionary such that signal becomes sparse.
- ‘generic dictionaries’ (Wavelets etc.) provide fast transforms, but are not adapted to signals at hand.
- ‘learned dictionaries’ provide good sparsity, but lack of fast transform can be prohibitive.
- learning a dictionary whose atoms are made up of generic atoms may allow one to squeeze out some extra sparsity by adapting to a given class of signals.
Thank You!

